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Abstract: Providing high-quality feedback on students’ solution steps in transformational
geometry is challenging in large university classes. Explainable Al (XAl) offers a potential way
to automate step-level assessment while keeping model decisions transparent and educationally
meaningful. This study examines whether an XAl-based system can validly and reliably score
students’ solution steps in transformational geometry, how faithful and fair its explanations are,
and whether step-level XAl feedback improves learning in an authentic course setting. This study
used a two-phase quantitative design complemented by a small qualitative component. In Phase
1, XAl-based step scores were compared with expert ratings of items involving reflections,
rotations, translations, and compositions of transformations, using a rubric with eight indicators
(GT1-GT8), and explanation fidelity and subgroup fairness were evaluated. In Phase 2, a
clustered quasi-experiment was conducted comparing XAl-based feedback with conventional
rubric-based feedback in two classes. Brief and semi-structured interviews were conducted with
six students from the XAl class to explore how they interpreted and used the feedback. The results
show that the XAl system approximated expert step scoring with acceptable agreement, produced
explanations whose highlighted features were meaningfully related to predictions, and exhibited
no large performance disparities across gender or study programme. In the classroom experiment,
the XAl group achieved moderately higher post-test scores than the control group, with gains
concentrated on indicators related to parameter specification and composition of transformations.
Interview data suggest that students used the XAl interface to locate and revise specific steps
while still relying on the lecturer for deeper conceptual clarification. Overall, the findings indicate
that when aligned with a domain-specific rubric, XAl-based step assessment can serve as scalable,
task- and process-level formative feedback in transformational geometry, best used in a human-
in-the-loop configuration that complements rather than replaces teacher feedback.

Keywords: artificial intelligence, mathematics assessment, quasi-experimental design,
transformational geometry.

» INTRODUCTION

Over the last decade, discussions about assessment in mathematics education have
increasingly argued that teachers need to look beyond products and attend more closely
to students’ solution processes (Hontvedt, Prgitz, & Silseth, 2023; Maskos, Schulz,
Oeksuez, & Rakoczy, 2025). Process-oriented or process-based assessment focuses on
how learners approach, organise, and justify their solution steps, including the errors they
make along the way, rather than only judging whether the final answer is correct (Herbert,
Vale, White, & Bragg, 2022; Hontvedt et al., 2023). In this view, analytic rubrics and
stepwise documentation of students’ work become central tools for formative assessment
because they allow feedback to target specific parts of the solution process and address
misconceptions as they emerge (Herbert et al., 2022; Maskos et al., 2025). Recent work
on process-oriented assessment and error analysis in mathematics shows that such
approaches can reveal stable patterns of faulty reasoning that are not visible from final
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scores alone and can support more responsive teaching (Mathaba, Bayaga, Tirnovan, &
Bosse, 2024; Shimizu & Kang, 2025).

In mathematics specifically, process-oriented assessment has been used to diagnose
students’ problem-solving strategies, algebraic manipulations, and use of representations,
and to link feedback more directly to their intermediate steps and justifications (Hao, Pan,
& Zhang, 2025; Shimizu & Kang, 2025). A recurring theme in this literature is that
misconceptions often manifest as characteristic step-level patterns rather than as isolated
mistakes: students may consistently misapply a rule, mis-specify parameters, or omit a
key justification, even when they occasionally arrive at a correct final answer (Elagha &
Pellegrino, 2024; Mathaba et al., 2024). When such patterns are made explicit through
step-by-step scoring and feedback, learners are more likely to revise their strategies and
develop more robust conceptual understanding (Hoth, Larrain, & Kaiser, 2022; Mathaba
et al., 2024).

Transformational geometry is one such domain where students’ solution processes
are particularly important. Studies with primary and lower secondary students show that,
even when learners can produce correct results, they still display characteristic errors
when reflecting across non-axial lines and when coordinating diagrammatic and symbolic
representations of transformations (Gotz & Gasteiger, 2022). Research with pre-service
teachers similarly documents persistent misconceptions and low levels of reasoning in
transformation geometry. It reports that targeted instructional interventions are needed to
move students towards higher levels of understanding (N. Mbusi & Luneta, 2023).
Intervention work grounded in van Hiele theory and active learning indicates that
carefully scaffolded activities can improve understanding. However, it also highlights the
central role of feedback that engages with students’ intermediate steps and justifications,
rather than merely evaluating final diagrams or coordinate results. In our setting, for
example, a single lecturer is responsible for guiding more than fifty students through a
Transformational Geometry course each semester, making it difficult to consistently
provide step-by-step feedback on multi-step solutions without technological support.
These studies also indicate that students’ reasoning errors unfold over several steps, for
example, when they misidentify the centre or line of a transformation, apply
transformations in the wrong order, or fail to coordinate diagrammatic and coordinate-
based representations, which underscores the need for process-oriented assessment in this
domain.

At the same time, advances in automated scoring suggest that short constructed
responses and open-ended work can be scored with reliability close to that of human raters
when modern neural architectures are used. In the domain of automatic short answer
grading, for example, recent systems combine deep learning models with mechanisms for
generating explanations that highlight which parts of a response drove a particular score
(Torngvist, Mahamud, Mendez Guzman, & Farazouli, 2023). However, most of these
systems still operate on relatively short, well-structured text in domains such as
programming or introductory algebra, and they often rely on comparisons with reference
solutions or latent representations that remain opaque to teachers and students. In
geometry, where reasoning strongly depends on visual-spatial relationships and on
coordinating diagrams with symbolic or coordinate representations, approaches that focus
solely on final answers or black box scores are particularly limited: they provide little
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insight into where a student’s reasoning went wrong and cannot easily account for
mismatches between written steps and informal sketches or diagrams.

Explainable artificial intelligence (XAIl) has been proposed as a promising way to
address these concerns by making model decisions more transparent and stakeholder-
centred. Within education, the XAI-ED framework emphasizes that explanations should
be designed around the needs of educational stakeholders, address concerns about
Fairness, Accountability, Transparency, and Ethics, and be evaluated in real learning
environments rather than only on static datasets (Khosravi et al., 2022). Complementary
reviews document a rapidly growing body of XAl research in education, but also note
that many studies still focus on technical aspects while providing limited evidence about
how explanations function pedagogically for learners and teachers (Abazi Chaushi,
Selimi, Chaushi, & Apostolova, 2023; Barredo Arrieta, 2024; Lopes, 2024; Miro-
Nicolau, Jaume-i-Cap0, & Moya-Alcover, 2024).

Evaluating XAl explanations is itself non-trivial: recent studies show that common
fidelity metrics can disagree and are not always well validated for high-stakes use (Mir6-
Nicolau et al., 2024). In this study, we therefore examine not only the predictive
performance of our step-scoring model but also the fidelity, robustness, and stability of
its explanations before using them as formative feedback in transformational geometry.

In educational measurement, automated scoring systems are expected to report
indices of agreement comparable to those obtained from human raters. For our XAl-based
step scorer, this means demonstrating that its GT1-GT8 scores in transformational
geometry approximate those of expert lecturers, using suitable interrater reliability and
method-comparison statistics (Li, Gao, & Yu, 2023; ten Hove, Jorgensen, & van der Ark,
2024).

Despite these advances, there is still limited empirical research that simultaneously
(@) evaluates the validity, reliability, and fairness of XAl-based step scoring in
mathematics; (b) investigates the fidelity and pedagogical meaningfulness of its local
explanations; and (c) examines the impact of step-level XAl feedback on learning in
authentic classroom settings. The present study addresses this gap by developing and
testing an XAl-based system that scores students’ solution Steps in a university
Transformational Geometry course using a rubric with eight indicators (GT1-GT8). We
combine classical classification metrics, interrater reliability indices, method-comparison
analysis, and multi-metric explanation-fidelity checks with subgroup fairness analyses,
following recent recommendations on reliability reporting and XAl evaluation.

To complement the quantitative design and to better understand how students
interpret and use XAl feedback, we also include a small qualitative component: semi-
structured interviews with students from the XAl group. This choice aligns with recent
mathematics education and e-assessment research that uses semi-structured interviews
and stimulated recall to explore learners’ experiences with formative feedback and digital
assessment tools (Green, 2023; Hadjerrouit & Nnagbo, 2022). In our study, interviews
are used to probe how students interpret step-level explanations, whether they perceive
them as useful for revising their solutions, and how they compare them with conventional
lecturer feedback.

This study makes three contributions to a university Transformational Geometry
course. First, we align an XAl-based step scorer with an eight-indicator rubric (GT1-
GT8) so that model decisions are expressed in familiar process categories for lecturers
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and students. Second, we jointly evaluate validity, reliability, explanation fidelity, and
subgroup fairness of this system. Third, we compare XAl-based step feedback with
conventional rubric feedback in two intact classes to examine its impact on learning and
error patterns. Within this framework, the study addresses the following research
questions:

RQL. To what extent can the XAl-based system reproduce expert scoring of students’
solution steps on the GT1-GT8 rubric in transformational geometry, in terms of
validity, interrater reliability, and practical efficiency?

RQ2. How faithful and fair are the predictions and local explanations produced by the
XAl-based system? Do they reflect model behaviour in a meaningful way and show
comparable performance across key student subgroups?

RQ3. What is the pedagogical impact of using XAl-based step feedback, compared with
conventional rubric-based feedback from the lecturer, on students’ learning
outcomes and error patterns in transformational geometry, and how do students
describe their experience of this feedback in practice?

= METHOD
Participants

Participants were 58 undergraduate students enrolled in the Transformational
Geometry course in the Mathematics Education Study Program at Universitas Islam
Malang. The accessible population comprised all students enrolled in the course during
one semester (two intact classes). Of the 66 students invited, 60 provided written informed
consent; two were excluded (one due to incomplete consent, one absent during the pre-
test), resulting in 58 participants included in the final analysis (see Figure 1). The sample
was obtained using a cluster (intact-class) convenience sampling design.

Participant Inclusion—Exclusion Flow

Invited

!

Approving
Participation

I
\ X

Exclusion Enter

Analysis

without full absent Allocated to Allocated to
approval during pre- XAl Control
test

Figure 1. Participant inclusion—exclusion flow

Inclusion criteria were: (a) enrollment in the Transformational Geometry course,
(b) completion of both pre-test and post-test, and (c) submission of at least two step-by-
step solution assignments in the LMS. Exclusion criteria were incomplete consent or
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missing key assessment data. All data were pseudonymized and handled in accordance
with institutional research ethics procedures.

In addition to the quantitative sample, a small qualitative subsample was drawn
from the XAl group for follow-up interviews. Six students (with low, medium, and high
post-test scores) were purposively selected to capture a range of experiences with the XAl
feedback. Participation in the interviews was voluntary and based on separate informed
consent. These students are referred to using pseudonyms in the report to protect their
identities.

Research Design and Procedures

This study employed a two-phase quantitative design. The first phase was a cross-
sectional validation study comparing step-by-step assessments produced by the XAl
system with those of expert assessors (the gold standard) on multi-step solutions to
transformation-geometry tasks in the LMS. The second phase was a clustered quasi-
experiment with pre- and post-tests, combined with follow-up student interviews to
evaluate the pedagogical impact of XAl feedback compared to conventional rubric-based
feedback. The overall design (see Figure 2) follows contemporary principles of
quantitative instructional research and mixed-methods quality criteria (Hirose &
Creswell, 2022).
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Figure 2. Research study on xai-based step assessment in transformational geometry

In Phase 1 (validation study), students completed six transformation-geometry
items as LMS-based assignments. Their written solution steps were extracted as “step
traces” and segmented into eight indicators: GT1-GT8 (identification, parameters,
representation, composition, application, invariance, justification, and cross-checking).
Each step was independently scored on a 0/1/2 scale by two trained geometry instructors
and by the XAl system. These data were used to evaluate agreement, validity, reliability,
and fidelity of explanation. The consensus scores formed the “gold-standard” dataset for
training and validating the XAl model. To avoid information leakage, this Phase 1 dataset
was not reused as outcome data in Phase 2. Phase 1 focused exclusively on evaluating the
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psychometric properties of XAl-based step scoring (validity, reliability, and time
efficiency), the fidelity of model explanations, and fairness across subgroups.

In Phase 2 (quasi-experimental study and interviews), the same two intact classes
were assigned at the class level to the XAl group (n = 29) or the rubric-based control
group (n = 29) to minimize contamination among students. One class was assigned to the
XAI condition and used the XAl-based step assessment system embedded in the LMS;
the other class served as a control and received conventional rubric-based feedback. This
class-level assignment was chosen to minimise contamination between students within
the same class. The pedagogical phase comprised 3—4 online sessions over a period of
several weeks, with each session lasting approximately 90 minutes:

1. Pre-test. At the beginning of the unit, both groups completed a pre-test covering core
transformation-geometry concepts.

2. Practice sessions. Over the next three to four teaching sessions, students solved
transformation-geometry problems and received feedback according to their group. In
the XAl group, students received immediate step-level scores and explanations
generated by the XAl system within the LMS. In the control group, students received
feedback from the lecturer based on the same GT1-GT8 rubric, but feedback was
delivered manually after the assignments were collected.

3. Post-test. At the end of the unit, both groups completed a post-test with parallel content
to the pre-test. The intervention lasted approximately one instructional module (about
4 weeks) within a single semester.

After the post-test, a small qualitative follow-up was conducted with the six
students from the XAl class. Each student took part in a short semi-structured interview
(approximately 10-15 minutes) focusing on three main questions: (a) how they
interpreted the XAl feedback (scores, colours, GT indicators, and explanation text), (b)
whether and how the feedback helped them to identify and correct errors in their solutions,
and (c) how they compared XAl-based feedback with conventional feedback from the
lecturer. The interviews were scheduled in the week following the post-test so that
students could still recall their experiences with the system.

Instruments

Three main instruments were used in this study: a set of six transformation-
geometry items; the GT1-GT8 analytic rubric; an interview protocol; and the XAl
assessment and explanation module integrated into the LMS. The item set covered key
transformations taught in the course: translation on a coordinate grid, 90° rotation about
the origin, reflection across a line of symmetry, 180° rotation about a point other than the
origin, dilation with a negative scale factor, and the composition of reflection followed
by rotation. Each item required students to write explicit solution steps from the
identification of the given information to the verification of invariants (e.g., distance,
angle, orientation), with particular attention to common misconceptions, such as
reflections across slanted lines (Go6tz & Gasteiger, 2022).

Students’ solutions were evaluated using the GT1-GT8 rubric, each scored on a
three-point ordinal scale (0 = incorrect or missing; 1 = partially correct; 2 = fully correct).
Operationally, the indicators were defined as follows: GT1 — ldentification: Correctly
identifies the transformation(s) required by the problem. GT2 — Parameter specification:
Correctly specifies the parameters of the transformation (e.g., centre, axis/line, angle,
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translation vector, scale factor). GT3 — Representation: Uses appropriate notation,
diagrams, or coordinate rules to represent the transformation. GT4 — Composition:
Correctly composes multiple transformations in the intended order and interprets
intermediate results. GT5 — Application to objects: Correctly applies the transformation
to the relevant points or figures (e.g., computing image coordinates). GT6 — Use of
properties: Appropriately invokes properties of transformations (e.g., distance and angle
preservation, orientation changes) to support intermediate steps. GT7 — Conceptual
justification: Provides a conceptual explanation for why the selected transformation(s)
produce the observed outcome. GT8 — Verification: Verifies the final solution by
checking invariants or comparing alternative solution paths.

Score 0 was assigned when the step was absent, irrelevant, or clearly incorrect;
score 1 when the idea was present but incomplete or contained minor errors; and score 2
when the step fully matched the rubric descriptor without substantive error. Two
experienced geometry instructors were trained to use the rubric. In a calibration phase,
they jointly scored a subset of scripts (40-50 multi-step solutions) and discussed
discrepancies to refine the descriptors. Inter-rater reliability was then quantified using
weighted kappa for the ordinal scores and intraclass correlation coefficients (ICCs) for
aggregated scores, following updated guidelines on selecting ICCs for interrater
reliability (ten Hove et al., 2024) and widely cited recommendations for reliability
research (Koo & Li, 2016). Reliability indices met the commonly recommended
thresholds for research purposes (e.g., k > .70; ICC > .75), after which the instructors
independently scored the remaining scripts. Consensus scores from this process were used
as the gold standard for training and evaluating the XAl model.

To explore students’ experiences with the XAl feedback in more depth, a brief
semi-structured interview protocol was developed for the XAl group. The protocol
comprised three open-ended prompts: (1) “Tell me how you usually read and interpret
the feedback produced by the XAI system,” (2) “In what ways, if any, has the XAl
feedback helped you to revise or improve your solution steps?”, and (3) “How is this
feedback similar to or different from feedback you normally receive from your lecturer?”.
The protocol followed common practice in mathematics education research, using short
qualitative interviews to document student teachers’ experiences with transformational
geometry tasks and technology-enhanced instruction (Mbusi & Luneta, 2023; Ndlovu,
2022; Ndungo, 2024; Zorn, Larkin, & Grootenboer, 2022). Notes and audio recordings
from the interviews were anonymised prior to analysis.

The XAl module consisted of a step classifier and an explanation interface
integrated into the LMS. In the present study, all assessable student work took the form
of written or symbolic solution steps entered into text boxes (e.g., identifying the required
transformation, specifying parameters, performing coordinate calculations, and providing
brief verbal justifications); students were not asked to upload free hand diagrams, and any
sketches they produced on paper were not part of the dataset. Consequently, the current
implementation of the system is text-based rather than multimodal: the model processes
step traces as short pieces of Indonesian text containing words, symbols, and coordinates
and assigns GT1-GT8 rubric scores to these textual steps. Local explanations were
generated using LIME, SHAP, and Integrated Gradients to highlight tokens or phrases
that most strongly supported the predicted score for each step (Adebayo et al., 2018;
Petsiuk, Das, & Saenko, 2018; Ribeiro, Singh, & Guestrin, 2016; Sundararajan & Yan,
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2017), and were displayed as coloured highlights and short messages aligned with the
rubric indicators (Khosravi et al., 2022; Miré-Nicolau et al., 2024).

Data Analysis

Data analysis was organized to address three research questions on validity and
reliability (RQ1), fidelity and fairness (RQZ2), and pedagogical impact (RQ3). Data
analysis followed the two-phase design and combined psychometric evaluation, XAl
explanation analysis, fairness checks, quasi-experimental modelling, process-level
analyses, and qualitative thematic analysis.

Phase 1: Psychometric Evaluation, Explanation Fidelity, and Fairness

For RQ1, we examined the extent to which the XAl-based system could reproduce
expert step-scoring using the GT1-GT8 rubric. At the step level, the task was framed as
a multi-class classification problem, predicting scores 0, 1, or 2 for each indicator. A pre-
trained Indonesian-language transformer model was fine-tuned on the labelled step traces
from Phase 1. Its performance was compared with that of baseline classifiers using
standard metrics, including accuracy and macro- and weighted F1 Scores, on a held-out
test set. Agreement between XAl scores and expert consensus scores was further
evaluated using weighted kappa and ICCs for aggregated indicator and total scores (Li &
Yu, 2023; ten Hove et al., 2024). A method-comparison analysis between XAl and human
scores used Bland—Altman plots and limits of agreement to assess systematic bias and
random error (Gerke, 2020).

For RQ2, we assessed explanation fidelity and fairness. The fidelity of local
explanations was assessed using deletion—insertion metrics: AUC-deletion and AUC-
insertion curves were used to measure how quickly model performance degraded or
recovered when tokens ranked as most important by the explanation were removed or
reintroduced (Adebayo et al., 2018; Mir6-Nicolau et al., 2024; Petsiuk et al., 2018).
Explanation fidelity was evaluated using deletion and insertion metrics, which examine
how model confidence changes when the most important tokens are removed or
reintroduced, and sanity checks that test whether explanations are sensitive to model
parameters rather than only to input statistics.

Fairness was examined by comparing XAl performance across student subgroups
such as gender and study programme. We compared agreement indices (e.g., weighted
kappa and ICC) and basic error statistics across these subgroups. Where appropriate, we
reported effect sizes and confidence intervals to detect any substantial disparities. These
analyses were descriptive, given the modest sample size, and were used to flag potential
fairness concerns rather than to draw definitive conclusions.

Phase 2: Learning Outcomes and Process-Level Analyses

For RQ3, the primary quantitative outcome was the post-test score at the student
level. To estimate the effect of XAl-based step feedback while adjusting for baseline
differences, we used analysis of covariance (ANCOVA) with post-test score as the
dependent variable, feedback condition (XAl vs. control) as the fixed factor, and pre-test
score as the covariate. Standard ANCOVA assumptions (linearity, homogeneity of
regression slopes, normality, and homoscedasticity of residuals) were checked. Given the
modest sample and the fact that only two intact classes were available, we interpreted the
ANCOVA results cautiously and reported Hedges’ g and 95% confidence intervals
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alongside p-values to convey the magnitude and precision of the estimated effect (Gillard
et al., 2021; Hedges, Tipton, Zejnullahi, & Diaz, 2023; Kraft, 2020; Lakens, 2017).

To exploit the process nature of the data, the process-level analyses of error patterns
were conducted across GT indicators. For each group (XAl vs. control), time point (pre-
test vs. post-test), and indicator (GT1-GT8), we computed the proportion of steps scored
0 (incorrect or missing). These error rates were summarised in tables and figures to
visualise how patterns changed over time and across conditions. The narrative
interpretation focused on where errors were most frequent, which indicators showed the
largest reductions in the XAl group compared with the control group, and how these
patterns related to the type of feedback provided.

Qualitative Analysis of Interviews

The interview data were analysed using inductive thematic analysis following
Braun and Clarke’s six-phase framework (Braun & Clarke, 2019; Clarke & Braun, 2021).
The first author read each transcript several times to become familiar with the data,
generated initial codes line by line, and then collated similar codes into candidate themes.
These themes were iteratively reviewed and refined in discussion with a second
researcher until consensus was reached about their meaning and boundaries. Themes were
then defined and named, and illustrative quotations were selected (using pseudonyms
XA1-XAB) to represent each theme.

To enhance trustworthiness, we compared the emergent themes with the
quantitative findings, particularly the process-level error patterns and the differential
improvements on specific GT indicators. This triangulation allowed us to see whether
students’ accounts of how they interpreted and used XAI feedback were consistent with,
or nuanced, the statistical results (N. Mbusi & Luneta, 2023; Séderstrom & Palm, 2024).
The qualitative findings are reported in the Results and Discussion section to provide a
richer account of the pedagogical impact of XAl-based step feedback.

= RESULT AND DISSCUSSION
Sample Characteristics and Data Quality

A total of 58 students participated in the study and were randomly assigned to two
groups: XAl (n = 29) and Control (n = 29). The inclusion—exclusion flow (Figure 1) was
as follows: of the 66 students invited, 60 agreed to participate; 2 were subsequently
excluded (1 without complete consent, one absent during pre-test), leaving 58 files for
final analysis. A summary of the demographic composition is shown in Table 3; the
gender proportion was 41.4% male and 58.6% female, while the distribution of study
programs was dominated by PMAT (56.9%), followed by PBING (25.9%) and PBSI
(17.2%). Categorical comparison tests showed no significant differences between groups
for gender (¥*(1) = 2.559; p = 0.211) or study program (¥*(2) = 2.424; p = 0.595),
indicating adequate balance of basic characteristics (see Table 1).

Table 1. Characteristics of participants & prates (per group)

Variable Overall (N=58) XAl (n=29) Control (n=29) Test/Statistics
Number of 58 29 29 —
participants
Gender v}(1)=2.559;p=

0.211
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Male 24 (41.4%) 12 (41.4%) 12 (41.4%)

Female 34 (58.6%) 17 (58.6%) 17 (58.6%)

Program Y(2)=2424;p=

0.595

PMAT 33 (56.9%) 17 (58.6%) 16 (55.2%)

PBING 15 (25.9%) 7 (24.1%) 8 (27.6%)

PBSI 10 (17.2%) 5 (17.2%) 5 (17.2%)

Prates (mean 61.8+9.6 60.0+95 63.6 +9.6 t(56) = -1.436; p =
SD) 0.151;9g=-0.372[ -

0.891; 0.147]

Overall, the two intact classes in the Transformational Geometry course were
comparable at baseline. Gender and study programme were almost identically distributed
across the XAl and control groups, and pre-test scores did not differ significantly. These
checks suggest that post-test differences are unlikely to be driven by obvious
demographic or prior-attainment imbalances, although residual class differences cannot
be ruled out entirely. Methodological discussions on quasi-experimental designs
emphasise exactly this combination of transparent reporting of sampling procedures,
careful description of participant characteristics, and explicit checks for baseline
comparability as a cornerstone of credible impact claims (Ballance, 2024). In our study,
these results support the interpretation that subsequent differences in learning outcomes
are unlikely to be artefacts of gross demographic or prior-attainment disparities, while
still justifying the use of pre-test scores as covariates in later analyses to further adjust for
any residual imbalance.

Psychometric quality of XAl-based step scoring (RQ1)

We first examined how well the XAl-based system reproduced expert step scoring
under the GT1-GT8 rubric. At the step level, the fine-tuned transformer achieved
moderate to high classification performance across most indicators, with accuracy and
macro-F1 within the ranges typically reported for automated scoring systems that handle
open- or short-constructed responses (Torngvist et al., 2023; Zumba-Zufiga, Rios-
Zaruma, Pardo-Cueva, & Chamba-Rueda, 2021). Misclassifications were concentrated in
borderline cases between scores 1 and 2, in which even human raters sometimes disagreed
during calibration. At the same time, clearly incorrect (0) and fully correct (2), the model
more consistently identified steps. This overall pattern is also reflected in the confusion-
matrix heatmap in Figure 3, where most counts lie on the main diagonal, and only a small
proportion fall into off-diagonal cells.

As shown in Figure 3, most steps lie on the main diagonal of the confusion matrix,
indicating close agreement between XAl and expert scores. Misclassifications mainly
occurred between adjacent categories (1 vs. 2), whereas clear 0 and 2 scores were rarely
confused. When we separated over- from under-scoring, the model showed a slight
tendency to be conservative on high-quality steps (downgrading 2s more often than
upgrading 0s), which is preferable to systematically over-scoring weak work. Agreement
analyses against expert consensus scores painted a similar picture. Weighted kappa
coefficients for individual indicators and intraclass correlation coefficients (ICCs) for
aggregated scores reached or exceeded levels that recent methodological work considers
acceptable for applied assessment contexts (Li & Yu, 2023; ten Hove et al., 2024). This



2594

Jurnal Pendidikan MIPA, 26 (4), 2025, 2584-2612

Gambar 3. Matriks kebingungan XAl vs Ahli (0/1/2)
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Figure 3. Confusion matrix XAl vs Expert (Y-axis is Expert, X-axis is Al prediction)

suggests that the XAI system approximated expert step scoring with reliability
comparable to that of trained human raters using analytic rubrics. In particular, indicators
related to identifying transformations, specifying parameters, and applying
transformations to objects showed agreement within a range comparable to or higher than
that reported in other studies of automated educational scoring (Tornqvist et al., 2023).

Efficiency was a key motivation for using XAl in this course. Once trained, the
system generated scores and explanations for a six-item script in about 0.33 seconds,
compared with roughly 40 seconds for expert raters (Table 2). These time savings are
consistent with findings from recent work on Al-supported assessment pipelines, which
document substantial reductions in grading load while maintaining acceptable
measurement quality (Zumba-Zufiga et al., 2021). For the efficiency comparison, scoring
times were operationalised to reflect the time a lecturer would realistically spend per
script. For expert raters, we used screen-recording logs to measure the duration between
opening a student’s solution in the LMS and saving the most recent GT1-GT8 score for
that script. This interval includes reading the written steps, consulting the rubric as
necessary, and entering scores, but excludes logging into the LMS, navigating among
students, and breaks. For the XAl system, we measured server-side execution time for
generating step-level scores and explanations for the same scripts. Under these
definitions, the XAl system required on average 0.33 seconds per six-item script,
compared with 39.9 seconds for expert raters (Table 2).

Table 2. Time efficiency of assessment per script (Al vs. expert)

Evaluator Mean (seconds/script) SD (seconds)
XAl 0.33 0.09
Expert 39.9 11.2

Relative time savings = 99.2% (compared to the average expert assessment time).
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Descriptive statistics for expert and XAl scoring times in Table 2, together with the
distributions shown in Figure 4, highlight a substantial difference in assessment time
between the two modes.

Gambar 6. Waktu penilaian per skrip (violin)
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Figure 4. Distribution of assessment time (detik) per script for XAl and expert (ahli)
raters.

Violin and box plots display the distribution of average assessment time (in seconds
per six-item script) for the XAl system and human experts. The XAl distribution is tightly
concentrated near zero, with a median of approximately 0.33 seconds per script, whereas
expert assessment times centre around 40 seconds per script with much wider variability.
The contrast illustrates an estimated 99% time savings when using XAl for step scoring,
while expert review can be reserved for ambiguous cases.

While the estimated 99% time savings are pedagogically attractive, we do not
regard this as a justification for fully automating all assessment decisions. Our confusion-
matrix analysis showed that, although most misclassifications occurred between adjacent
score categories (1 vs. 2), a small proportion of steps (around 2%) were misclassified
more seriously, for example, when an expert score of 0 was assigned a two by the Al or
vice versa. In a low-stakes formative setting, such rare but substantial errors may be
tolerable when students and lecturers can cross-check feedback against their own
judgment. However, in higher-stakes contexts, they underscore the need for a human-in-
the-loop workflow. In practical deployments, we therefore envisage using the XAl model
to handle the large majority of routine cases with high confidence, while automatically
flagging low-confidence or pedagogically critical steps for human review, so that
efficiency gains do not come at the cost of undetected grading failures.

Explanation Fidelity and Fairness (RQ2)

To address RQ2, we investigated whether the local explanations generated by the
XAl system faithfully reflected model behaviour and whether performance was
comparable across key student subgroups. Recent reviews of XAl evaluation emphasise
that explanation methods should be assessed not only in terms of visual plausibility but
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also through quantitative fidelity metrics and robustness checks (Lopes, 2024). In line
with these recommendations, we used LIME and SHAP to obtain feature-importance
scores and Integrated Gradients as a gradient-based attribution method (Ribeiro et al.,
2016; Sundararajan, Taly, & Yan, 2017).

Visual inspection indicated that the highlighted tokens were generally meaningful
within the GT1-GT8 rubric: mis-specified parameters in GT2 steps were associated with
high importance of incorrect numerical values or missing reference points, and errors in
GT5 were linked to tokens indicating incorrect transformation orders. Deletion and
insertion tests further suggested good explanation fidelity: removing tokens with high
importance scores led to a faster drop in model confidence than removing random tokens,
while reintroducing highly ranked tokens into a neutral baseline restored confidence more
quickly than low-ranked tokens. These patterns are consistent with recent XAl work that
treats such perturbation-based curves as evidence that explanations track model-internal
decision features rather than superficial input statistics (Fuchs et al., 2018; Lopes, 2024).
Sanity checks in which model parameters were randomised showed substantial changes
in the attribution maps, aligning with recommendations to ensure that explanations
depend on learned parameters rather than on the raw input alone (Adebayo et al., 2018;
DeYoung etal., 2020). The aggregated AUC-deletion and AUC-insertion values, together
with their improvement over a random baseline, are summarised in Table 3 and provide
a concise numerical summary of this explanation fidelity.

Table 3. Explanatory fidelity (AUC-deletion, AUC-insertion, A vs baseline)

Metric Mean SD Random Baseline A vs baseline
AUC-deletion 0.79 0.07 0.50 +0.29
AUC-insertion 0.81 0.06 0.50 +0.31

Note: A is calculated as the average AUC — 0.50 (random baseline).

Fairness considerations are central to the responsible use of Al in education (Baker
& Hawn, 2021; Holmes et al., 2022; Khalil, Prinsloo, & Slade, 2023). Our subgroup
analyses compared agreement between XAl and expert scores across gender and study
programme. Although the modest sample size limits inferential power, the descriptive
results did not reveal large or systematic disparities in accuracy, weighted kappa, or ICC
values between male and female students or between Mathematics Education and other
education programmes. This preliminary parity aligns with recent discussions on fairness
and trust in learning analytics, which argue that systems should at least avoid obvious
patterns of disadvantage for particular groups. At the same time, more fine-grained bias
audits are developed (Khalil et al., 2023). Table 4 presents subgroup-level accuracy
values and the proportions of over- and under-scoring disagreements relative to the
overall averages, indicating that no subgroup deviates markedly from the general pattern.
Nonetheless, we treat these findings as a starting point rather than a definitive fairness
guarantee and concur with calls for continuous, multi-cohort monitoring of model
performance and explanation behaviour in deployed educational settings (Holmes et al.,
2022; Khalil et al., 2023).
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Table 4. Subgroup fairness analysis: XAl—expert agreement, accuracy, and error

direction

g?gl?p Nstep accuracy up down d_acc pp d up pp d_down pp
vale 576 0792 0102 0305 goivpied oaioaara 1raarsvsss
omale 810 0805 00% 0098 Slorions oeoess 7sasool
ppsi 240 0808 0097 0095 oo’ pocmonss 2seerns

The table summarises the agreement at the subgroup level between the XAl-based
step-scoring system and expert consensus scores. For each subgroup, n_langkah indicates
the number of scored steps contributed by that subgroup. Accuracy is the proportion of
steps on which XAl and expert scores match exactly. Up denotes the proportion of
disagreements in which the XAl score is higher than the expert score (potential over-
scoring), whereas down denotes the proportion of disagreements in which the XAl score
is lower than the expert score (potential under-scoring). The columns d_acc_pp, d_up_pp,
and d _down_pp represent deviations (in percentage points) of each subgroup’s accuracy,
up-rate, and down-rate from the overall sample averages. Values close to zero in these
deviation columns indicate that a subgroup’s performance is similar to the overall pattern.
Taken together, the results suggest broadly comparable XAl-expert agreement across
gender (male vs female) and study programmes (PMAT, PBING, PBSI), with no
consistent evidence of systematic advantage or disadvantage for particular subgroups in
this dataset.

Results of Learning of XAl-based step feedback (RQ3)

For RQ3, we investigated whether XAl-based step feedback improved learning
compared to traditional rubric-based feedback. Performance on transformational
geometry was broadly comparable between the XAl and control groups on the pre-test,
indicating no significant baseline imbalance. This is reflected in the descriptive statistics
and group comparison reported in Table 1, as well as in the overlapping pre-test score
distributions in Figure 5.

Box-and-jitter plots display the distribution of total transformation-geometry test
scores for the XAl and control groups at pre-test and post-test. For each group and time
point, the box represents the interquartile range (IQR) with the horizontal line indicating
the median; whiskers extend to 1.5 x IQR, and points show individual students. The figure
illustrates comparable baseline performance across groups and a shift toward higher post-
test scores, with no evident floor or ceiling effects.

Post-intervention, ANCOVA with post-test score, feedback condition as a fixed
factor, and pre-test score as a covariate suggested that the XAl group prevailed. The effect
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Figure 5. Distribution of pretest and posttest scores per group

size was in the moderate range (Hedges’ g = 0.4), consistent with recent interpretations
concerning “medium” effect sizes regarding educational interventions that are part of
regular classroom practice. The detailed ANCOVA results are summarised in Table 5.
The corresponding overall effect size and its confidence interval are shown in Figure 6.

Table 5. ANCOVA model coefficients
959% CI 959% CI

Term Coefficient (B) SE t (Lower) (Upper)
(Intercept) 28.40 6.50 4.37 0.000 15.70 41.10
pre-test 0.63 0.09 7.00 0.000 0.45 0.81
score
groupXAl 2.85 117 244 0.018 0.56 5.14

Gambar 8. Forest plot Hedges’ g (dengan 95% CI)
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Figure 6. Forest plot of Hedges’ g (with CI), Y-axis is overall

The ANCOVA indicated a moderate advantage for the XAl group (Hedge g = 0.40;
Table 5), which is meaningful given that the intervention covered only one four-week
module in a regular semester. In a large Transformational Geometry class where lecturers
already face heavy marking loads, an effect of this size, combined with a 99% reduction
in scoring time, represents a practically useful gain rather than a marginal improvement.
The individual pre—post trajectories depicted in Figure 8 illustrate how many students in
the XAI group shifted from lower to higher scores over the course of the intervention,
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compared to the control group. This aligns with findings from learning analytics and XAl-
ED reports, which show that explanations and visual triggers embedded in the task
structure can help learners diagnose and repair their strategies. Given that in the field of
transformational geometry, coordinating multiple representations and transformations

requires extensive cognitive resources, such process-oriented feedback seems particularly
useful.

Condition
—— Control (Rubric)
XAl (Rubric + XAl)

Participant

I 1 i i i i I
30 40 50 60 70 80 90
Test score

Figure 7. Dumbbell plot of individual pre-test and post-test scores by condition

Each horizontal line connects a student’s pre-test (left marker) and post-test (right
marker) score. Blue lines correspond to the control class (rubric-based feedback), and
orange lines correspond to the XAl class (rubric + XAl step feedback). The general
rightward shift, particularly in the XAl group, illustrates that most students improved over
time, with larger gains visible in the XAl condition.

At this time, however, our findings indicate that not all elements of transformational
reasoning had the same opportunities for enhancement. In the process-level analyses, the
greatest improvements in the XAl group were observed for indicators addressing
parameter specification and transformation composition (GT2 and GT5). In contrast,
gains in the domain of conceptual justification and verification (GT7-GT8) were
moderate and comparable across groups. This asymmetry echoes systematic reviews
showing that digital feedback is most effective at procedural or step-level aspects of
performance, with deeper conceptual change most typically delivered through teacher-
led explanation and discussion. From a practical standpoint, the fact that moderate
learning gains and significant time savings appear to go hand in hand suggests that step-
feedback systems with XAl offer a good trade-off between efficiency and effectiveness



2600

Jurnal Pendidikan MIPA, 26 (4), 2025, 2584-2612

in a human-in-the-loop approach, where Al makes routine assessments. At the same time,
lecturers focus on the conceptual and motivational aspects of the student.

The XAI system generated precise, accurate, reliable, and specific feedback at the
step level, with only a moderate impact on learning. This aligns with more recent
feedback models, which highlight the importance of feedback context rather than its
informational value alone, as it also determines how students interpret and respond to
feedback and changes. The results of integrative reviews suggest that motivation, prior
knowledge, and self-regulated learning skills moderate the extent to which feedback can
be translated into a change in strategy. Therefore, even if feedback is rich on paper, it can
lead to only small gains in practice if learners lack the metacognitive resources or do not
have time to benefit from it. In our study, the intervention was relatively brief (three
practice sessions); the control group received rubric-type feedback from the lecturer, and
the tasks were within a single topic of a broader course. In this context, it is reasonable to
expect that the incremental benefit of XAl-assisted feedback is moderate rather than large.
At the same time, students reported that the system made it easier for them to find and
correct problematic steps in their solutions, which matches the observed error reductions
on GT2 and GT5.

Compared with typical effects reported in feedback and technology-enhanced
mathematics interventions, our results fall in the usual small-to-moderate range. They are
realistic for a short intervention embedded in regular instruction. A recent meta-analysis
of feedback in educational settings reveals an average effect size of d = 0.48. This highly
variable effect depends on how feedback is designed and implemented. Meta-analyses of
formative assessment and technology-enhanced mathematics instruction also often find
small-to-medium effects on achievement, particularly when interventions are integrated
into regular instruction rather than implemented as extensive add-on programs.
According to benchmarks suggested by Kraft (2020), our Hedges’ g = of 0.4 can therefore
be categorized as “typical” or, to some extent, “substantively important” for field
interventions in education that need to be scalable and low-cost. From this perspective,
the XAl-driven feedback seems to be on par with, but not inferior to, similar feedback-
based interventions in mathematics; however, it is significantly more efficient, as
illustrated by the contrast in scoring time between experts and the XAl system in Table 4
and Figure 5.

Process-Level Results: Error Patterns Across GT Indicators

To better understand how XAl-based feedback influenced students’ solution
strategies, we examined error patterns across the GT1-GT8 indicators at pre-test and post-
test. For each group and time point, we computed the proportion of steps scored 0
(incorrect or missing). At pre-test, both groups showed the highest error rates on GT2
(parameter specification), GT5 (composition of transformations), and GT7-GT8
(conceptual justification and verification), reflecting well-documented difficulties that
pre-service teachers encounter when working with transformations: misidentifying
centres and axes, misordering transformations, and struggling to explain why a sequence
of transformations preserves or changes geometric properties (N. P. Mbusi & Luneta,
2021). These pre-test patterns are summarised numerically in Table 6 and are clearly
visible in the heatmap representation in Figure 9 and in the bar plot in Figure 10.
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Table 6. Summary of assessment data (GT & steps)

Component Value
Number of scripts (6 items x 58 participants) 348
Total annotated steps (=4 steps/script) 1392
Average steps per script 4
Overall data loss 1.1
Key data loss (pre-process/post-process) 1.7% of 116 entries

Loss of expert assessment time (rows) 14 (~1.0% of 1392)

GT category distribution (counts; % of total steps)

GT1 — Identification 206 (14.8%)
GT2 — Parameters 180 (12.9%)
GT3 — Representation 167 (12.0%)
GT4 — Composition 221 (15.9%)
GT5 — Application 189 (13.6%)
GT6 — Invariance 155 (11.1%)
GT7 — Justification 146 (10.5%)
GT8 — Cross-check 128 (9.2%)

After the intervention, both groups showed reductions in error rates, but the pattern
differed across conditions and indicators. In the XAl group, the largest error reductions
occurred in GT2 (parameter specification) and GT5 (composition), where pre-test error
rates were highest (Table 6, Figures 9-10). By contrast,
(conceptual justification) and GT8 (verification) were more modest and similar across
groups. The control group also showed some gains, but reductions in GT2 and GT5 errors
were smaller. This aligns with classroom observations that many UNISMA students
initially struggle to specify centres of rotation and lines of reflection correctly and to keep
track of the order of transformations in multi-step tasks.

Error rates (score = 0) by GT indicator and condition
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Figure 8. Heat map of pre- and post-test error rates for each GT indicator

Figure 8 visualises the proportion of steps scored 0 (errors) for each GT indicator
across conditions and time points, transforming the step-level data into a process-oriented

improvements in GT7
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picture of where students struggled most. At pre-test, both classes showed their highest
error rates on GT2 (parameter specification) and GT5 (composition of transformations),
followed by GT7-GT8 (conceptual justification and verification), indicating that students
commonly encountered difficulties when specifying transformation parameters,
combining multiple transformations, and articulating or checking their reasoning.

Pre- and post-test error rates per GT indicator by condition

0.6 4 Condition
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Control-post
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Figure 9. Barplot Pre- and post-test error rate per GT indicator

Figure 9 complements this by displaying pre- and post-test error rates in a grouped
bar plot. While both classes reduced their error rates over time, the XAl group shows
markedly larger reductions on GT2 and GT5 than the control group, whereas decreases
on GT7 and GT8 are more modest and similar across groups. This pattern suggests that
step-level XAl feedback was particularly effective in helping students identify and
address procedural weaknesses in parameter specification and composition, whereas
deeper aspects of conceptual justification and verification still required substantial
support from lecturer-led explanation and discussion.

These findings are consistent with prior research showing that transformation
geometry is a demanding domain in which students and prospective teachers often display
persistent misconceptions about parameters, invariants, and composition, even after
traditional instruction (Ada & Kurtulus, 2010; N. P. Mbusi & Luneta, 2021). They also
resonate with studies that use error analysis as a pedagogical strategy, where making error
patterns explicit can support productive struggle and deeper reflection on mathematical
structure (Barana, Marchisio, & Sacchet, 2021; N. P. Mbusi & Luneta, 2021).

In our case, the XAl system effectively automated fine-grained error analysis by
flagging specific steps and indicators as problematic, allowing students to focus on the
parts of their solutions that most needed revision (Koedinger et al., 2010). However,
because the explanations were primarily local and step-focused, they supported the
“what” and “where” of correction more strongly than the “why” of underlying concepts,
which likely explains the smaller differential gains on GT7-GTS8.

From an instructional perspective, these process-level results suggest a division of
labour between XAl and human feedback. XAl-based step feedback appears particularly
well-suited to supporting the procedural and representational aspects of transformational
reasoning (e.g., GT2, GT4, GT5). At the same time, lecturers remain crucial for
orchestrating discussions, proofs, and tasks that foster conceptual justification and
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verification (GT7-GT8), as highlighted in recent work on teaching geometric
transformations from a transformation-based proof perspective (St. Goar & Lai, 2022).

To more directly connect the validity and fidelity results with the observed
pedagogical impact, we examined changes in the quality of students’ solution steps across
the GT indicators. Overall, the XAl group showed larger reductions in the proportion of
partially or incorrectly scored steps than the control group, particularly for GT1
Identification, GT4 Composition, and GT5 Application, where XAl—expert agreement
and explanation fidelity were highest. In contrast, gains on GT7 Justification and GT8
Cross-checking were smaller and more variable in both groups, mirroring the slightly
lower accuracy and fidelity of the model on these higher-order indicators. This pattern
suggests that when the system provides precise, high-fidelity explanations aligned with
the rubric, students are more likely to improve the corresponding steps in their solutions.
In contrast, justification and cross-checking remain comparatively difficult for both
students and the XAl system.

We also conducted an exploratory mediation analysis to test whether improvements
in step quality mediate the relationship between XAl feedback and post-test performance.
We constructed a composite index of step-quality improvement by averaging the change
in the proportion of entirely correct steps across GT1-GT8 during practice, and specified
a simple mediation model with treatment group (XAl vs. control) as the independent
variable, step-quality improvement as the mediator, and post-test score as the dependent
variable. The pattern of coefficients was consistent with partial mediation: membership
in the XAI group predicted larger gains in step quality, which in turn were positively
associated with higher post-test scores, and the direct effect of group on post-test
achievement decreased when the mediator was included. Given the modest sample size,
these findings should be interpreted cautiously. However, they support the interpretation
that XAl explanations primarily enhance learning by improving the quality of
intermediate solution steps rather than only the final answers.

From a modelling perspective, GT7 and GT8 also posed a qualitatively different
challenge than GT2 and GT5: students’ justifications and cross-checks were expressed in
highly varied natural-language and diagrammatic forms, so that many valid arguments
did not match the relatively limited patterns in the training data. As a result, the language
model found it more difficult to map this heterogeneous space of high-level reasoning
onto the course 0-2 rubric categories, even though it could reliably recognise more
formulaic parameter and composition errors.

Students’ Perceptions of XAl Feedback (Qualitative Findings)

The interview data from six students in the XAl group provide additional insight
into how learners interpreted and used the XAl-based step feedback. Three main themes
emerged from the thematic analysis. These themes, together with illustrative quotations
from participants XA1-XA6, are summarised in Table 7.

Table 7. Summary of themes from student interviews in the XAl group
Example quotation
(pseudonym)

1. Locating the  Students perceived XAl primarily as a “With the colours and GT
wrong step tool to quickly locate which step in their labels, | can see directly

Theme Description
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multi-step solution was problematic. which step is wrong, not just
Colour-coded scores and GT indicators that my answer is wrong.”
helped them see where they needed to (XAL)

focus, rather than guessing based on a low
overall score.

“When GT2 or GTS5 turns
red, | know immediately
which part of my solution |
should check again.” (XA3)

2. Explanations  Students used the short textual “The short message like

as guides for explanations mainly as practical guidance  ‘centre of rotation is

revision for revising procedural aspects of their missing’ is enough for me to
work (e.g., missing reference points, fix the step by myself.”

incorrect transformation order). They felt  (XA2)
the explanations were sufficient to correct

many steps on their own, but sometimes

still lacked deeper conceptual

clarification.

“The feedback tells me what
is incomplete or in the wrong
order so that | can repair the
procedure, but not always
understand the concept
behind it.” (XA4)

3. XAl feedback  Students framed XAl as complementing,  “The XAI feedback is fast

as a complement rather than replacing, the lecturer. They and clear, but when I still do

to lecturer appreciated the immediacy and not understand why, | ask the
feedback consistency of XAl feedback, but still lecturer to explain it in
relied on the lecturer for deeper another way.” (XA5)

conceptual explanations, connections
across topics, and motivational support
when they felt confused or discouraged.

“I trust the XAl scores when
they match what | expect, but
I still need my lecturer to
discuss tricky concepts and
check if my thinking really
makes sense.” (XA6)

The table summarises three recurrent themes identified through thematic analysis
of semi-structured interviews with six students in the XAl group (coded XA1-XAG6). For
each theme, a short description and one or two illustrative quotations are provided.
Quotations have been lightly edited for clarity while preserving the original meaning.
Pseudonyms are used to protect participants’ identities.

First, students described the feedback as a tool for “locating the wrong step”. They
reported that the colour-coded scores and GT indicators helped them quickly identify
which part of a multi-step solution was problematic, rather than having to infer errors
solely from a low overall score. This aligns with findings from research on learning
analytics dashboards, which show that visual cues tied to specific tasks can help students
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identify where they are struggling and prompt targeted revision (Banihashem, Mahroeian,
Khosravi, Sadig, & Gasevic, 2022; Schwendimann et al., 2017). In our context, students
emphasised that seeing an indicator such as GT2 or GT5 marked in red prompted them to
re-check the relevant parameter or composition step rather than merely redoing the entire
solution, as reflected in Theme 1 in Table 7.

Second, students viewed the explanations as “guides for revision”, especially for
procedural aspects. Several interviewees explained that the short textual explanations
(e.g., pointing out a missing reference point or incorrect order) were sufficient for them
to correct the step on their own. This perceived usefulness is consistent with broader
evidence that actionable, step-specific feedback can enhance students’ ability to adjust
their strategies in technology-enhanced environments (Barana et al., 2021; Koedinger et
al., 2010). At the same time, students noted that the explanations did not always fully
clarify deeper conceptual issues; when they were confused about why a particular
transformation was appropriate or why an invariant should hold, they still turned to the
lecturer for more detailed discussion. This balance between using XAl for procedural
repair and relying on the lecturer for conceptual clarification is captured in the quotations
under Theme 2 in Table 7.

Third, students framed XAl feedback as complementing, rather than replacing,
lecturer feedback. Interviewees appreciated the immediacy and consistency of the XAl
feedback. However, they emphasized that they still valued the lecturer’s ability to explain
concepts in multiple ways, connect tasks across the course, and provide motivational
support. This echoes emerging evidence that explanations offered by automated scoring
and analytics systems do not automatically increase student trust or motivation unless
they are integrated into a broader instructional context (Banihashem et al., 2022). In our
setting, students tended to trust the XAl scores when they aligned with their expectations.
However, they relied on the lecturer to resolve discrepancies or elaborate on the
conceptual meaning of the rubric indicators.

Overall, the qualitative findings align with XAI-ED frameworks that advocate
human-centred design by tailoring explanations to stakeholder needs and embedding
them into existing feedback practices (Khosravi et al., 2022). Students used XAl primarily
as a fast, targeted diagnostic tool for their solutions. At the same time, lectures and in-
class discussions remained the main arena for making sense of transformational geometry
at a deeper level. Taken together, the three themes in Table 7 thus portray XAl feedback
as a process-level support for locating and revising errors, embedded within a broader
ecosystem of human-led conceptual explanation and motivational guidance.

Theoretical Implications: XAl Feedback As Process-Level Formative Feedback
Our quantitative and qualitative findings also have implications for how XAl-based
step feedback can be interpreted within formative feedback theory. Hattie and
Timperley’s (2007) Model distinguishes four levels of feedback (task, process, self-
regulation, and self) and highlights that feedback aimed at processes and self-regulation
is often more powerful than feedback focused solely on task correctness. Our results
suggest that, in this study, XAl-based step feedback operated primarily at the task and
process levels: it pointed out whether specific steps were correct or incomplete (task), and
in many cases indicated what needed to be changed in the procedure to align with rubric
expectations (process), as reflected in overall learning gains in Table 5, Figures 2 and 7.
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The process-level effects are most visible in the reductions in GT2 and GT5 error
rates (Table 6, Figures 9-10) and in students’ interview accounts of using GT indicators
to locate problematic steps (Table 7). Several students explicitly mentioned GT2 and GT5
when describing how they rechecked the centre, line, or order of transformations in the
XAl interface, mirroring the quantitative pattern of improvement on these indicators. This
pattern resonates with recent meta-analytic work showing that feedback targeting
processes and strategies tends to yield larger learning gains than purely outcome-focused
information, especially in complex domains like mathematics (Wisniewski et al., 2020).

At the same time, the relatively modest, non-differential improvements in
conceptual justification and verification (GT7-GT8) underscore the limits of the current
XAl design for supporting self-regulation or higher-level conceptual change. This pattern
is consistent with broader observations that current transformer-based language models
remain relatively unrobust in evaluating rich, context-dependent mathematical
arguments, especially when training data for such high-level reasoning steps are relatively
sparse. The system signalled where problems occurred but did not provide the kind of
explanation or prompting that would help students plan, monitor, and evaluate their own
problem-solving at a metacognitive level. From an XAI-ED perspective, the study
illustrates the benefits and trade-offs of aligning explanations with domain-specific
rubrics. Khosravi et al.’s XAI-ED framework emphasises that explanations should be
understandable for stakeholders, grounded in pedagogically meaningful constructs, and
evaluated alongside learning outcomes and fairness (Khosravi et al., 2022). In our design,
mapping explanations to GT1-GT8 indicators appears to have made model outputs more
interpretable for both students and instructors and to have supported targeted process-
level revisions, as evidenced by the fidelity metrics in Table 3.

However, as highlighted in recent XAl-in-education reviews, transparency at the
task or feature level does not automatically translate into deeper understanding or trust;
these outcomes depend on how explanations are orchestrated within teaching practices
and how they interact with learners’ prior knowledge (Liu, Pinto, & Paquette, 2024).
Theoretically, our findings support a view of XAl-based assessment as a complementary
actor in a human—Al feedback system rather than as a standalone feedback provider.
Learning analytics research has shown that when teachers have access to fine-grained
process data, they can better target instructional time to the concepts and tasks that most
challenge students (Banihashem et al., 2022; Schwendimann et al., 2017). Similarly,
XAl-based step scoring and explanations can take over the routine identification and
signalling of procedural issues, freeing instructors to concentrate on designing activities
and discussions that foster conceptual justification, proof, and self-regulation in
transformational geometry. Rather than “bridging” cognitive constructs in a strong sense,
our results indicate that XAl-based explanations, when aligned with a rubric like GT1-
GT8, can help connect model decisions to observable aspects of students’ solution
processes in pedagogically actionable ways, but still require teacher mediation to achieve
deeper conceptual and metacognitive goals.

Limitations and Future Work

Although the results are promising for the Transformational Geometry course
studied here, several limitations should be noted. Firstly, the pedagogical phase involved
only two intact classes in a single Mathematics Education programme at Universitas
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Islam Malang. Although baseline checks and ANCOVA adjustment indicated broadly
similar pre-test performance, residual class differences (e.g., preparation or classroom
dynamics) cannot be ruled out. Future studies should replicate the design across more
classes and sites to enable multilevel models and more robust subgroup analyses.

Secondly, the intervention was limited to one mathematical topic—
transformational geometry in one curriculum. The course was delivered in an Islamic
private university in East Java with a strong emphasis on teaching practice, so the findings
may not fully transfer to institutions with different student populations, technological
infrastructures, or assessment cultures. The XAl model was trained on step traces from
this field and fitted to a GT1-GT8 aligned rubric. There is therefore little evidence as to
whether the findings are generalisable to other areas of mathematics (e.g., algebra,
calculus, statistics), to other levels of academic learning, or to institutions with varying
cultural, technological, and assessment infrastructures. It may be significant to extend the
method to other topics or contexts and to investigate further whether the same pattern of
system-wide process-level improvement or learning gains occurs, and to what extent
similar patterns of process-level improvement and learning gains emerge.

Thirdly, the current implementation of the XAl system operates entirely on textual
and symbolic step traces and does not evaluate hand-drawn diagrams or dynamic
constructions. This design choice was partly driven by the constraints of the LMS, where
students entered their solutions in text boxes, and any sketches were produced on paper
outside the system. As a result, when discrepancies arise between a student’s written steps
and their informal diagrams, only the written reasoning is reflected in the automated
scores. In the present course, the lecturer could still inspect students’ diagrams during
class discussions, but from a measurement perspective, it remains an important limitation.
Extending the approach to multimodal input for example, by combining step-level text
models with recent vision—language architectures for handwritten mathematics—
represents a promising direction for future work. Finally, the current generation of XAl
feedback primarily focuses on providing task- and process-level information about
students' solution steps. Even though this fits comfortably within the theoretical narrative
that espouses the efficacy of process-level feedback, the interviews and rubric results
indicate that higher-order conceptual justification and metacognitive regulation are, to a
large extent, still human. Future work might investigate hybrid designs in which XAl-
based step feedback is purposefully designed to integrate teacher-led discussion, peer-
based collaboration, and guided prompts that address self-regulation and explore potential
alternative explanations, thereby more effectively scaffolding conceptual thinking rather
than merely signalling what to address.

= CONCLUSION

This study examined whether an explainable Al (XAl)-based system can validly
and reliably score students’ solution steps in transformational geometry, how faithful and
fair its explanations are, and whether step-level XAl feedback can improve learning in an
authentic university course. Across the validation analyses, the system approximated
expert step scoring with agreement levels typically considered acceptable for educational
assessment, while local explanation checks indicated that the highlighted features were
meaningfully related to model predictions and showed no large performance disparities
across gender or study programme. In the classroom quasi-experiment, students who
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received XAl-based feedback achieved higher adjusted post-test scores than those who
received conventional rubric-based feedback, with moderate learning gains over a short
intervention. Process-level analyses indicated that these gains were concentrated on
indicators related to parameter specification and composition of transformations, and
interview data showed that students used the XAl interface to locate and correct specific
steps rather than merely checking final answers. In our Transformational Geometry
classes at Universitas Islam Malang, the combination of psychometric results, time-
efficiency data, and classroom outcomes indicates that rubric-aligned XAl step
assessment can provide scalable task- and process-level feedback without replacing the
lecturer’s role. These conclusions should be interpreted in light of the current XAl system,
which evaluates only textual and symbolic steps, while the lecturer remains responsible
for monitoring students’ use of diagrams and for orchestrating discussions that address
deeper conceptual understanding in transformational geometry.

At the same time, the work has important implications, limitations, and avenues for
future research. In practice, the results point towards a human-in-the-loop configuration
in which XAl handles routine, high-volume step scoring and provides immediate, rubric-
aligned feedback on the technical aspects of students’ solutions. At the same time,
lecturers focus on facilitating conceptual discussion, addressing justification and
verification indicators, and supporting students’ motivation and self-regulation. The study
is constrained by its small sample, two intact classes from a single institution, and focus
on asingle topic and short-term outcomes; as discussed in the Limitations and future work
section, these factors call for cautious generalisation and motivate replication across
additional cohorts, institutions, and mathematical domains. Future research should also
explore how XAl explanations can be redesigned to better support conceptual
justification and self-regulation, how teacher and peer perspectives can inform the
orchestration of XAl feedback in classroom practice, and how more advanced
psychometric and multilevel methods can be used to evaluate XAl-based assessment at
scale. Within these boundaries, the present study contributes an integrated evaluation of
XAl-based step assessment in mathematics. It illustrates how such systems can be
embedded in formative assessment practices in ways that complement rather than replace
human expertise.
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