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Abstract: Providing high-quality feedback on students’ solution steps in transformational 

geometry is challenging in large university classes. Explainable AI (XAI) offers a potential way 

to automate step-level assessment while keeping model decisions transparent and educationally 

meaningful. This study examines whether an XAI-based system can validly and reliably score 

students’ solution steps in transformational geometry, how faithful and fair its explanations are, 

and whether step-level XAI feedback improves learning in an authentic course setting. This study 

used a two-phase quantitative design complemented by a small qualitative component. In Phase 

1, XAI-based step scores were compared with expert ratings of items involving reflections, 

rotations, translations, and compositions of transformations, using a rubric with eight indicators 

(GT1–GT8), and explanation fidelity and subgroup fairness were evaluated. In Phase 2, a 

clustered quasi-experiment was conducted comparing XAI-based feedback with conventional 

rubric-based feedback in two classes. Brief and semi-structured interviews were conducted with 

six students from the XAI class to explore how they interpreted and used the feedback. The results 

show that the XAI system approximated expert step scoring with acceptable agreement, produced 

explanations whose highlighted features were meaningfully related to predictions, and exhibited 

no large performance disparities across gender or study programme. In the classroom experiment, 

the XAI group achieved moderately higher post-test scores than the control group, with gains 

concentrated on indicators related to parameter specification and composition of transformations. 

Interview data suggest that students used the XAI interface to locate and revise specific steps 

while still relying on the lecturer for deeper conceptual clarification. Overall, the findings indicate 

that when aligned with a domain-specific rubric, XAI-based step assessment can serve as scalable, 

task- and process-level formative feedback in transformational geometry, best used in a human-

in-the-loop configuration that complements rather than replaces teacher feedback.  

 

Keywords: artificial intelligence, mathematics assessment, quasi-experimental design, 

transformational geometry.    

 

▪ INTRODUCTION 

Over the last decade, discussions about assessment in mathematics education have 

increasingly argued that teachers need to look beyond products and attend more closely 

to students’ solution processes (Hontvedt, Prøitz, & Silseth, 2023; Maskos, Schulz, 

Oeksuez, & Rakoczy, 2025). Process-oriented or process-based assessment focuses on 

how learners approach, organise, and justify their solution steps, including the errors they 

make along the way, rather than only judging whether the final answer is correct (Herbert, 

Vale, White, & Bragg, 2022; Hontvedt et al., 2023). In this view, analytic rubrics and 

stepwise documentation of students’ work become central tools for formative assessment 

because they allow feedback to target specific parts of the solution process and address 

misconceptions as they emerge (Herbert et al., 2022; Maskos et al., 2025). Recent work 

on process-oriented assessment and error analysis in mathematics shows that such 

approaches can reveal stable patterns of faulty reasoning that are not visible from final 
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scores alone and can support more responsive teaching (Mathaba, Bayaga, Tîrnovan, & 

Bossé, 2024; Shimizu & Kang, 2025).  

In mathematics specifically, process-oriented assessment has been used to diagnose 

students’ problem-solving strategies, algebraic manipulations, and use of representations, 

and to link feedback more directly to their intermediate steps and justifications (Hao, Pan, 

& Zhang, 2025; Shimizu & Kang, 2025). A recurring theme in this literature is that 

misconceptions often manifest as characteristic step-level patterns rather than as isolated 

mistakes: students may consistently misapply a rule, mis-specify parameters, or omit a 

key justification, even when they occasionally arrive at a correct final answer (Elagha & 

Pellegrino, 2024; Mathaba et al., 2024). When such patterns are made explicit through 

step-by-step scoring and feedback, learners are more likely to revise their strategies and 

develop more robust conceptual understanding (Hoth, Larrain, & Kaiser, 2022; Mathaba 

et al., 2024). 

Transformational geometry is one such domain where students’ solution processes 

are particularly important. Studies with primary and lower secondary students show that, 

even when learners can produce correct results, they still display characteristic errors 

when reflecting across non-axial lines and when coordinating diagrammatic and symbolic 

representations of transformations (Götz & Gasteiger, 2022). Research with pre-service 

teachers similarly documents persistent misconceptions and low levels of reasoning in 

transformation geometry. It reports that targeted instructional interventions are needed to 

move students towards higher levels of understanding (N. Mbusi & Luneta, 2023). 

Intervention work grounded in van Hiele theory and active learning indicates that 

carefully scaffolded activities can improve understanding. However, it also highlights the 

central role of feedback that engages with students’ intermediate steps and justifications, 

rather than merely evaluating final diagrams or coordinate results. In our setting, for 

example, a single lecturer is responsible for guiding more than fifty students through a 

Transformational Geometry course each semester, making it difficult to consistently 

provide step-by-step feedback on multi-step solutions without technological support. 

These studies also indicate that students’ reasoning errors unfold over several steps, for 

example, when they misidentify the centre or line of a transformation, apply 

transformations in the wrong order, or fail to coordinate diagrammatic and coordinate-

based representations, which underscores the need for process-oriented assessment in this 

domain. 

At the same time, advances in automated scoring suggest that short constructed 

responses and open-ended work can be scored with reliability close to that of human raters 

when modern neural architectures are used. In the domain of automatic short answer 

grading, for example, recent systems combine deep learning models with mechanisms for 

generating explanations that highlight which parts of a response drove a particular score 

(Tornqvist, Mahamud, Mendez Guzman, & Farazouli, 2023). However, most of these 

systems still operate on relatively short, well-structured text in domains such as 

programming or introductory algebra, and they often rely on comparisons with reference 

solutions or latent representations that remain opaque to teachers and students. In 

geometry, where reasoning strongly depends on visual–spatial relationships and on 

coordinating diagrams with symbolic or coordinate representations, approaches that focus 

solely on final answers or black box scores are particularly limited: they provide little 
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insight into where a student’s reasoning went wrong and cannot easily account for 

mismatches between written steps and informal sketches or diagrams.  

Explainable artificial intelligence (XAI) has been proposed as a promising way to 

address these concerns by making model decisions more transparent and stakeholder-

centred. Within education, the XAI-ED framework emphasizes that explanations should 

be designed around the needs of educational stakeholders, address concerns about 

Fairness, Accountability, Transparency, and Ethics, and be evaluated in real learning 

environments rather than only on static datasets (Khosravi et al., 2022). Complementary 

reviews document a rapidly growing body of XAI research in education, but also note 

that many studies still focus on technical aspects while providing limited evidence about 

how explanations function pedagogically for learners and teachers (Abazi Chaushi, 

Selimi, Chaushi, & Apostolova, 2023; Barredo Arrieta, 2024; Lopes, 2024; Miró-

Nicolau, Jaume-i-Capó, & Moyà-Alcover, 2024).  

Evaluating XAI explanations is itself non-trivial: recent studies show that common 

fidelity metrics can disagree and are not always well validated for high-stakes use (Miró-

Nicolau et al., 2024). In this study, we therefore examine not only the predictive 

performance of our step-scoring model but also the fidelity, robustness, and stability of 

its explanations before using them as formative feedback in transformational geometry.  

In educational measurement, automated scoring systems are expected to report 

indices of agreement comparable to those obtained from human raters. For our XAI-based 

step scorer, this means demonstrating that its GT1–GT8 scores in transformational 

geometry approximate those of expert lecturers, using suitable interrater reliability and 

method-comparison statistics (Li, Gao, & Yu, 2023; ten Hove, Jorgensen, & van der Ark, 

2024). 

Despite these advances, there is still limited empirical research that simultaneously 

(a) evaluates the validity, reliability, and fairness of XAI-based step scoring in 

mathematics; (b) investigates the fidelity and pedagogical meaningfulness of its local 

explanations; and (c) examines the impact of step-level XAI feedback on learning in 

authentic classroom settings. The present study addresses this gap by developing and 

testing an XAI-based system that scores students’ solution steps in a university 

Transformational Geometry course using a rubric with eight indicators (GT1–GT8). We 

combine classical classification metrics, interrater reliability indices, method-comparison 

analysis, and multi-metric explanation-fidelity checks with subgroup fairness analyses, 

following recent recommendations on reliability reporting and XAI evaluation. 

To complement the quantitative design and to better understand how students 

interpret and use XAI feedback, we also include a small qualitative component: semi-

structured interviews with students from the XAI group. This choice aligns with recent 

mathematics education and e-assessment research that uses semi-structured interviews 

and stimulated recall to explore learners’ experiences with formative feedback and digital 

assessment tools (Green, 2023; Hadjerrouit & Nnagbo, 2022). In our study, interviews 

are used to probe how students interpret step-level explanations, whether they perceive 

them as useful for revising their solutions, and how they compare them with conventional 

lecturer feedback. 

This study makes three contributions to a university Transformational Geometry 

course. First, we align an XAI-based step scorer with an eight-indicator rubric (GT1–

GT8) so that model decisions are expressed in familiar process categories for lecturers 
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and students. Second, we jointly evaluate validity, reliability, explanation fidelity, and 

subgroup fairness of this system. Third, we compare XAI-based step feedback with 

conventional rubric feedback in two intact classes to examine its impact on learning and 

error patterns. Within this framework, the study addresses the following research 

questions: 

 

RQ1. To what extent can the XAI-based system reproduce expert scoring of students’ 

solution steps on the GT1–GT8 rubric in transformational geometry, in terms of 

validity, interrater reliability, and practical efficiency? 

RQ2. How faithful and fair are the predictions and local explanations produced by the 

XAI-based system? Do they reflect model behaviour in a meaningful way and show 

comparable performance across key student subgroups? 

RQ3. What is the pedagogical impact of using XAI-based step feedback, compared with 

conventional rubric-based feedback from the lecturer, on students’ learning 

outcomes and error patterns in transformational geometry, and how do students 

describe their experience of this feedback in practice?  

 

▪ METHOD 

Participants  

Participants were 58 undergraduate students enrolled in the Transformational 
Geometry course in the Mathematics Education Study Program at Universitas Islam 
Malang. The accessible population comprised all students enrolled in the course during 
one semester (two intact classes). Of the 66 students invited, 60 provided written informed 
consent; two were excluded (one due to incomplete consent, one absent during the pre-
test), resulting in 58 participants included in the final analysis (see Figure 1). The sample 
was obtained using a cluster (intact-class) convenience sampling design. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Participant inclusion–exclusion flow 
 
Inclusion criteria were: (a) enrollment in the Transformational Geometry course, 

(b) completion of both pre-test and post-test, and (c) submission of at least two step-by-
step solution assignments in the LMS. Exclusion criteria were incomplete consent or 
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missing key assessment data. All data were pseudonymized and handled in accordance 
with institutional research ethics procedures.  

In addition to the quantitative sample, a small qualitative subsample was drawn 
from the XAI group for follow-up interviews. Six students (with low, medium, and high 
post-test scores) were purposively selected to capture a range of experiences with the XAI 
feedback. Participation in the interviews was voluntary and based on separate informed 
consent. These students are referred to using pseudonyms in the report to protect their 
identities. 

 
Research Design and Procedures 

This study employed a two-phase quantitative design. The first phase was a cross-
sectional validation study comparing step-by-step assessments produced by the XAI 
system with those of expert assessors (the gold standard) on multi-step solutions to 
transformation-geometry tasks in the LMS. The second phase was a clustered quasi-
experiment with pre- and post-tests, combined with follow-up student interviews to 
evaluate the pedagogical impact of XAI feedback compared to conventional rubric-based 
feedback. The overall design (see Figure 2) follows contemporary principles of 
quantitative instructional research and mixed-methods quality criteria (Hirose & 
Creswell, 2022).  

 
 

Figure 2. Research study on xai-based step assessment in transformational geometry 
 
In Phase 1 (validation study), students completed six transformation-geometry 

items as LMS-based assignments. Their written solution steps were extracted as “step 
traces” and segmented into eight indicators: GT1–GT8 (identification, parameters, 
representation, composition, application, invariance, justification, and cross-checking). 
Each step was independently scored on a 0/1/2 scale by two trained geometry instructors 
and by the XAI system. These data were used to evaluate agreement, validity, reliability, 
and fidelity of explanation. The consensus scores formed the “gold-standard” dataset for 
training and validating the XAI model. To avoid information leakage, this Phase 1 dataset 
was not reused as outcome data in Phase 2. Phase 1 focused exclusively on evaluating the 
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psychometric properties of XAI-based step scoring (validity, reliability, and time 
efficiency), the fidelity of model explanations, and fairness across subgroups. 

In Phase 2 (quasi-experimental study and interviews), the same two intact classes 
were assigned at the class level to the XAI group (n = 29) or the rubric-based control 
group (n = 29) to minimize contamination among students. One class was assigned to the 
XAI condition and used the XAI-based step assessment system embedded in the LMS; 
the other class served as a control and received conventional rubric-based feedback. This 
class-level assignment was chosen to minimise contamination between students within 
the same class. The pedagogical phase comprised 3–4 online sessions over a period of 
several weeks, with each session lasting approximately 90 minutes: 

 
1. Pre-test. At the beginning of the unit, both groups completed a pre-test covering core 

transformation-geometry concepts.  
2. Practice sessions. Over the next three to four teaching sessions, students solved 

transformation-geometry problems and received feedback according to their group. In 
the XAI group, students received immediate step-level scores and explanations 
generated by the XAI system within the LMS. In the control group, students received 
feedback from the lecturer based on the same GT1–GT8 rubric, but feedback was 
delivered manually after the assignments were collected. 

3. Post-test. At the end of the unit, both groups completed a post-test with parallel content 
to the pre-test. The intervention lasted approximately one instructional module (about 
4 weeks) within a single semester. 

After the post-test, a small qualitative follow-up was conducted with the six 
students from the XAI class. Each student took part in a short semi-structured interview 
(approximately 10–15 minutes) focusing on three main questions: (a) how they 
interpreted the XAI feedback (scores, colours, GT indicators, and explanation text), (b) 
whether and how the feedback helped them to identify and correct errors in their solutions, 
and (c) how they compared XAI-based feedback with conventional feedback from the 
lecturer. The interviews were scheduled in the week following the post-test so that 
students could still recall their experiences with the system. 

 
Instruments 

Three main instruments were used in this study: a set of six transformation-
geometry items; the GT1–GT8 analytic rubric; an interview protocol; and the XAI 
assessment and explanation module integrated into the LMS. The item set covered key 
transformations taught in the course: translation on a coordinate grid, 90° rotation about 
the origin, reflection across a line of symmetry, 180° rotation about a point other than the 
origin, dilation with a negative scale factor, and the composition of reflection followed 
by rotation. Each item required students to write explicit solution steps from the 
identification of the given information to the verification of invariants (e.g., distance, 
angle, orientation), with particular attention to common misconceptions, such as 
reflections across slanted lines (Götz & Gasteiger, 2022). 

Students’ solutions were evaluated using the GT1–GT8 rubric, each scored on a 
three-point ordinal scale (0 = incorrect or missing; 1 = partially correct; 2 = fully correct). 
Operationally, the indicators were defined as follows: GT1 – Identification: Correctly 
identifies the transformation(s) required by the problem. GT2 – Parameter specification: 
Correctly specifies the parameters of the transformation (e.g., centre, axis/line, angle, 
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translation vector, scale factor). GT3 – Representation: Uses appropriate notation, 
diagrams, or coordinate rules to represent the transformation. GT4 – Composition: 
Correctly composes multiple transformations in the intended order and interprets 
intermediate results. GT5 – Application to objects: Correctly applies the transformation 
to the relevant points or figures (e.g., computing image coordinates). GT6 – Use of 
properties: Appropriately invokes properties of transformations (e.g., distance and angle 
preservation, orientation changes) to support intermediate steps. GT7 – Conceptual 
justification: Provides a conceptual explanation for why the selected transformation(s) 
produce the observed outcome. GT8 – Verification: Verifies the final solution by 
checking invariants or comparing alternative solution paths. 

Score 0 was assigned when the step was absent, irrelevant, or clearly incorrect; 
score 1 when the idea was present but incomplete or contained minor errors; and score 2 
when the step fully matched the rubric descriptor without substantive error. Two 
experienced geometry instructors were trained to use the rubric. In a calibration phase, 
they jointly scored a subset of scripts (40–50 multi-step solutions) and discussed 
discrepancies to refine the descriptors. Inter-rater reliability was then quantified using 
weighted kappa for the ordinal scores and intraclass correlation coefficients (ICCs) for 
aggregated scores, following updated guidelines on selecting ICCs for interrater 
reliability (ten Hove et al., 2024) and widely cited recommendations for reliability 
research (Koo & Li, 2016). Reliability indices met the commonly recommended 
thresholds for research purposes (e.g., κ ≥ .70; ICC ≥ .75), after which the instructors 
independently scored the remaining scripts. Consensus scores from this process were used 
as the gold standard for training and evaluating the XAI model. 

To explore students’ experiences with the XAI feedback in more depth, a brief 
semi-structured interview protocol was developed for the XAI group. The protocol 
comprised three open-ended prompts: (1) “Tell me how you usually read and interpret 
the feedback produced by the XAI system,” (2) “In what ways, if any, has the XAI 
feedback helped you to revise or improve your solution steps?”, and (3) “How is this 
feedback similar to or different from feedback you normally receive from your lecturer?”. 
The protocol followed common practice in mathematics education research, using short 
qualitative interviews to document student teachers’ experiences with transformational 
geometry tasks and technology-enhanced instruction (Mbusi & Luneta, 2023; Ndlovu, 
2022; Ndungo, 2024; Zorn, Larkin, & Grootenboer, 2022). Notes and audio recordings 
from the interviews were anonymised prior to analysis. 

The XAI module consisted of a step classifier and an explanation interface 
integrated into the LMS. In the present study, all assessable student work took the form 
of written or symbolic solution steps entered into text boxes (e.g., identifying the required 
transformation, specifying parameters, performing coordinate calculations, and providing 
brief verbal justifications); students were not asked to upload free hand diagrams, and any 
sketches they produced on paper were not part of the dataset. Consequently, the current 
implementation of the system is text-based rather than multimodal: the model processes 
step traces as short pieces of Indonesian text containing words, symbols, and coordinates 
and assigns GT1–GT8 rubric scores to these textual steps. Local explanations were 
generated using LIME, SHAP, and Integrated Gradients to highlight tokens or phrases 
that most strongly supported the predicted score for each step (Adebayo et al., 2018; 
Petsiuk, Das, & Saenko, 2018; Ribeiro, Singh, & Guestrin, 2016; Sundararajan &  Yan,  
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2017), and were displayed as coloured highlights and short messages aligned with the 
rubric indicators (Khosravi et al., 2022; Miró-Nicolau et al., 2024). 
 
Data Analysis 

Data analysis was organized to address three research questions on validity and 
reliability (RQ1), fidelity and fairness (RQ2), and pedagogical impact (RQ3). Data 
analysis followed the two-phase design and combined psychometric evaluation, XAI 
explanation analysis, fairness checks, quasi-experimental modelling, process-level 
analyses, and qualitative thematic analysis. 

 
Phase 1: Psychometric Evaluation, Explanation Fidelity, and Fairness 

For RQ1, we examined the extent to which the XAI-based system could reproduce 
expert step-scoring using the GT1–GT8 rubric. At the step level, the task was framed as 
a multi-class classification problem, predicting scores 0, 1, or 2 for each indicator. A pre-
trained Indonesian-language transformer model was fine-tuned on the labelled step traces 
from Phase 1. Its performance was compared with that of baseline classifiers using 
standard metrics, including accuracy and macro- and weighted F1 Scores, on a held-out 
test set. Agreement between XAI scores and expert consensus scores was further 
evaluated using weighted kappa and ICCs for aggregated indicator and total scores (Li & 
Yu, 2023; ten Hove et al., 2024). A method-comparison analysis between XAI and human 
scores used Bland–Altman plots and limits of agreement to assess systematic bias and 
random error (Gerke, 2020). 

For RQ2, we assessed explanation fidelity and fairness. The fidelity of local 
explanations was assessed using deletion–insertion metrics: AUC-deletion and AUC-
insertion curves were used to measure how quickly model performance degraded or 
recovered when tokens ranked as most important by the explanation were removed or 
reintroduced (Adebayo et al., 2018; Miró-Nicolau et al., 2024; Petsiuk et al., 2018). 
Explanation fidelity was evaluated using deletion and insertion metrics, which examine 
how model confidence changes when the most important tokens are removed or 
reintroduced, and sanity checks that test whether explanations are sensitive to model 
parameters rather than only to input statistics. 

Fairness was examined by comparing XAI performance across student subgroups 
such as gender and study programme. We compared agreement indices (e.g., weighted 
kappa and ICC) and basic error statistics across these subgroups. Where appropriate, we 
reported effect sizes and confidence intervals to detect any substantial disparities. These 
analyses were descriptive, given the modest sample size, and were used to flag potential 
fairness concerns rather than to draw definitive conclusions. 

 
Phase 2: Learning Outcomes and Process-Level Analyses 

For RQ3, the primary quantitative outcome was the post-test score at the student 
level. To estimate the effect of XAI-based step feedback while adjusting for baseline 
differences, we used analysis of covariance (ANCOVA) with post-test score as the 
dependent variable, feedback condition (XAI vs. control) as the fixed factor, and pre-test 
score as the covariate. Standard ANCOVA assumptions (linearity, homogeneity of 
regression slopes, normality, and homoscedasticity of residuals) were checked. Given the 
modest sample and the fact that only two intact classes were available, we interpreted the 
ANCOVA results cautiously and reported Hedges’ g and 95% confidence intervals 
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alongside p-values to convey the magnitude and precision of the estimated effect (Gillard 
et al., 2021; Hedges, Tipton, Zejnullahi, & Diaz, 2023; Kraft, 2020; Lakens, 2017). 

To exploit the process nature of the data, the process-level analyses of error patterns 
were conducted across GT indicators. For each group (XAI vs. control), time point (pre-
test vs. post-test), and indicator (GT1–GT8), we computed the proportion of steps scored 
0 (incorrect or missing). These error rates were summarised in tables and figures to 
visualise how patterns changed over time and across conditions. The narrative 
interpretation focused on where errors were most frequent, which indicators showed the 
largest reductions in the XAI group compared with the control group, and how these 
patterns related to the type of feedback provided. 

 
Qualitative Analysis of Interviews 

The interview data were analysed using inductive thematic analysis following 
Braun and Clarke’s six-phase framework (Braun & Clarke, 2019; Clarke & Braun, 2021). 
The first author read each transcript several times to become familiar with the data, 
generated initial codes line by line, and then collated similar codes into candidate themes. 
These themes were iteratively reviewed and refined in discussion with a second 
researcher until consensus was reached about their meaning and boundaries. Themes were 
then defined and named, and illustrative quotations were selected (using pseudonyms 
XA1–XA6) to represent each theme. 

To enhance trustworthiness, we compared the emergent themes with the 
quantitative findings, particularly the process-level error patterns and the differential 
improvements on specific GT indicators. This triangulation allowed us to see whether 
students’ accounts of how they interpreted and used XAI feedback were consistent with, 
or nuanced, the statistical results (N. Mbusi & Luneta, 2023; Söderström & Palm, 2024). 
The qualitative findings are reported in the Results and Discussion section to provide a 
richer account of the pedagogical impact of XAI-based step feedback. 
 

▪ RESULT AND DISSCUSSION 

Sample Characteristics and Data Quality 

A total of 58 students participated in the study and were randomly assigned to two 

groups: XAI (n = 29) and Control (n = 29). The inclusion–exclusion flow (Figure 1) was 

as follows: of the 66 students invited, 60 agreed to participate; 2 were subsequently 

excluded (1 without complete consent, one absent during pre-test), leaving 58 files for 

final analysis. A summary of the demographic composition is shown in Table 3; the 

gender proportion was 41.4% male and 58.6% female, while the distribution of study 

programs was dominated by PMAT (56.9%), followed by PBING (25.9%) and PBSI 

(17.2%). Categorical comparison tests showed no significant differences between groups 

for gender (χ²(1) = 2.559; p = 0.211) or study program (χ²(2) = 2.424; p = 0.595), 

indicating adequate balance of basic characteristics (see Table 1). 

 

Table 1. Characteristics of participants & prates (per group) 
Variable Overall (N=58) XAI (n=29) Control (n=29) Test/Statistics 

Number of 

participants 

58 29 29 — 

Gender    χ²(1) = 2.559; p = 

0.211 
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Male 24 (41.4%) 12 (41.4%) 12 (41.4%)  

Female 34 (58.6%) 17 (58.6%) 17 (58.6%)  

Program    χ²(2) = 2.424; p = 

0.595 

PMAT 33 (56.9%) 17 (58.6%) 16 (55.2%)  

PBING 15 (25.9%) 7 (24.1%) 8 (27.6%)  

PBSI 10 (17.2%) 5 (17.2%) 5 (17.2%)  

Prates (mean ± 

SD) 

61.8 ± 9.6 60.0 ± 9.5 63.6 ± 9.6 t(56) = -1.436; p = 

0.151; g = -0.372 [ -

0.891; 0.147 ] 

 

Overall, the two intact classes in the Transformational Geometry course were 

comparable at baseline. Gender and study programme were almost identically distributed 

across the XAI and control groups, and pre-test scores did not differ significantly. These 

checks suggest that post-test differences are unlikely to be driven by obvious 

demographic or prior-attainment imbalances, although residual class differences cannot 

be ruled out entirely. Methodological discussions on quasi-experimental designs 

emphasise exactly this combination of transparent reporting of sampling procedures, 

careful description of participant characteristics, and explicit checks for baseline 

comparability as a cornerstone of credible impact claims (Ballance, 2024). In our study, 

these results support the interpretation that subsequent differences in learning outcomes 

are unlikely to be artefacts of gross demographic or prior-attainment disparities, while 

still justifying the use of pre-test scores as covariates in later analyses to further adjust for 

any residual imbalance. 

 

Psychometric quality of XAI-based step scoring (RQ1) 

We first examined how well the XAI-based system reproduced expert step scoring 

under the GT1–GT8 rubric. At the step level, the fine-tuned transformer achieved 

moderate to high classification performance across most indicators, with accuracy and 

macro-F1 within the ranges typically reported for automated scoring systems that handle 

open- or short-constructed responses (Tornqvist et al., 2023; Zumba-Zúñiga, Rios-

Zaruma, Pardo-Cueva, & Chamba-Rueda, 2021). Misclassifications were concentrated in 

borderline cases between scores 1 and 2, in which even human raters sometimes disagreed 

during calibration. At the same time, clearly incorrect (0) and fully correct (2), the model 

more consistently identified steps. This overall pattern is also reflected in the confusion-

matrix heatmap in Figure 3, where most counts lie on the main diagonal, and only a small 

proportion fall into off-diagonal cells. 

As shown in Figure 3, most steps lie on the main diagonal of the confusion matrix, 

indicating close agreement between XAI and expert scores. Misclassifications mainly 

occurred between adjacent categories (1 vs. 2), whereas clear 0 and 2 scores were rarely 

confused. When we separated over- from under-scoring, the model showed a slight 

tendency to be conservative on high-quality steps (downgrading 2s more often than 

upgrading 0s), which is preferable to systematically over-scoring weak work. Agreement 

analyses against expert consensus scores painted a similar picture. Weighted kappa 

coefficients for individual indicators and intraclass correlation coefficients (ICCs) for 

aggregated scores reached or exceeded levels that recent methodological work considers 

acceptable for applied assessment contexts (Li  & Yu, 2023; ten Hove et al., 2024). This  
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Figure 3. Confusion matrix XAI vs Expert (Y-axis is Expert, X-axis is AI prediction) 

 

suggests that the XAI system approximated expert step scoring with reliability 

comparable to that of trained human raters using analytic rubrics. In particular, indicators 

related to identifying transformations, specifying parameters, and applying 

transformations to objects showed agreement within a range comparable to or higher than 

that reported in other studies of automated educational scoring (Tornqvist et al., 2023). 

Efficiency was a key motivation for using XAI in this course. Once trained, the 

system generated scores and explanations for a six-item script in about 0.33 seconds, 

compared with roughly 40 seconds for expert raters (Table 2). These time savings are 

consistent with findings from recent work on AI-supported assessment pipelines, which 

document substantial reductions in grading load while maintaining acceptable 

measurement quality (Zumba-Zúñiga et al., 2021). For the efficiency comparison, scoring 

times were operationalised to reflect the time a lecturer would realistically spend per 

script. For expert raters, we used screen-recording logs to measure the duration between 

opening a student’s solution in the LMS and saving the most recent GT1–GT8 score for 

that script. This interval includes reading the written steps, consulting the rubric as 

necessary, and entering scores, but excludes logging into the LMS, navigating among 

students, and breaks. For the XAI system, we measured server-side execution time for 

generating step-level scores and explanations for the same scripts. Under these 

definitions, the XAI system required on average 0.33 seconds per six-item script, 

compared with 39.9 seconds for expert raters (Table 2).  

 

Table 2. Time efficiency of assessment per script (AI vs. expert) 
Evaluator Mean (seconds/script) SD (seconds) 

XAI 0.33 0.09 

Expert 39.9 11.2 
Relative time savings = 99.2% (compared to the average expert assessment time). 
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Descriptive statistics for expert and XAI scoring times in Table 2, together with the 

distributions shown in Figure 4, highlight a substantial difference in assessment time 

between the two modes.  

 

 
Figure 4. Distribution of assessment time (detik) per script for XAI and expert (ahli) 

raters. 

 

Violin and box plots display the distribution of average assessment time (in seconds 

per six-item script) for the XAI system and human experts. The XAI distribution is tightly 

concentrated near zero, with a median of approximately 0.33 seconds per script, whereas 

expert assessment times centre around 40 seconds per script with much wider variability. 

The contrast illustrates an estimated 99% time savings when using XAI for step scoring, 

while expert review can be reserved for ambiguous cases. 

While the estimated 99% time savings are pedagogically attractive, we do not 

regard this as a justification for fully automating all assessment decisions. Our confusion-

matrix analysis showed that, although most misclassifications occurred between adjacent 

score categories (1 vs. 2), a small proportion of steps (around 2%) were misclassified 

more seriously, for example, when an expert score of 0 was assigned a two by the AI or 

vice versa. In a low-stakes formative setting, such rare but substantial errors may be 

tolerable when students and lecturers can cross-check feedback against their own 

judgment. However, in higher-stakes contexts, they underscore the need for a human-in-

the-loop workflow. In practical deployments, we therefore envisage using the XAI model 

to handle the large majority of routine cases with high confidence, while automatically 

flagging low-confidence or pedagogically critical steps for human review, so that 

efficiency gains do not come at the cost of undetected grading failures. 

 

Explanation Fidelity and Fairness (RQ2) 

To address RQ2, we investigated whether the local explanations generated by the 

XAI system faithfully reflected model behaviour and whether performance was 

comparable across key student subgroups. Recent reviews of XAI evaluation emphasise 

that explanation methods should be assessed not only in terms of visual plausibility but 
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also through quantitative fidelity metrics and robustness checks (Lopes, 2024). In line 

with these recommendations, we used LIME and SHAP to obtain feature-importance 

scores and Integrated Gradients as a gradient-based attribution method (Ribeiro et al., 

2016; Sundararajan, Taly, & Yan, 2017). 

Visual inspection indicated that the highlighted tokens were generally meaningful 

within the GT1–GT8 rubric: mis-specified parameters in GT2 steps were associated with 

high importance of incorrect numerical values or missing reference points, and errors in 

GT5 were linked to tokens indicating incorrect transformation orders. Deletion and 

insertion tests further suggested good explanation fidelity: removing tokens with high 

importance scores led to a faster drop in model confidence than removing random tokens, 

while reintroducing highly ranked tokens into a neutral baseline restored confidence more 

quickly than low-ranked tokens. These patterns are consistent with recent XAI work that 

treats such perturbation-based curves as evidence that explanations track model-internal 

decision features rather than superficial input statistics (Fuchs et al., 2018; Lopes, 2024). 

Sanity checks in which model parameters were randomised showed substantial changes 

in the attribution maps, aligning with recommendations to ensure that explanations 

depend on learned parameters rather than on the raw input alone (Adebayo et al., 2018; 

DeYoung et al., 2020). The aggregated AUC-deletion and AUC-insertion values, together 

with their improvement over a random baseline, are summarised in Table 3 and provide 

a concise numerical summary of this explanation fidelity. 

 

Table 3. Explanatory fidelity (AUC-deletion, AUC-insertion, Δ vs baseline) 
Metric Mean SD Random Baseline Δ vs baseline 

AUC-deletion 0.79 0.07 0.50 +0.29 

AUC-insertion 0.81 0.06 0.50 +0.31 
Note: Δ is calculated as the average AUC − 0.50 (random baseline). 

 

Fairness considerations are central to the responsible use of AI in education (Baker 

& Hawn, 2021; Holmes et al., 2022; Khalil, Prinsloo, & Slade, 2023). Our subgroup 

analyses compared agreement between XAI and expert scores across gender and study 

programme. Although the modest sample size limits inferential power, the descriptive 

results did not reveal large or systematic disparities in accuracy, weighted kappa, or ICC 

values between male and female students or between Mathematics Education and other 

education programmes. This preliminary parity aligns with recent discussions on fairness 

and trust in learning analytics, which argue that systems should at least avoid obvious 

patterns of disadvantage for particular groups. At the same time, more fine-grained bias 

audits are developed (Khalil et al., 2023). Table 4 presents subgroup-level accuracy 

values and the proportions of over- and under-scoring disagreements relative to the 

overall averages, indicating that no subgroup deviates markedly from the general pattern. 

Nonetheless, we treat these findings as a starting point rather than a definitive fairness 

guarantee and concur with calls for continuous, multi-cohort monitoring of model 

performance and explanation behaviour in deployed educational settings (Holmes et al., 

2022; Khalil et al., 2023). 
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Table 4. Subgroup fairness analysis: XAI–expert agreement, accuracy, and error 

direction  
Sub 

group 
N step accuracy up down d_acc_pp d_up_pp d_down_pp 

Male 
576 0.792 0.102 0.106 

-0.8206896 

551724019 

0.35172413 

793103374 

0.4689655 

1724137925 

Female 
816 0.806 0.096 0.098 

0.57931034 

48275994 

-0.24827586 

20689654 

-0.33103448 

27586201 

PMAT 
792 0.806 0.098 0.096 

0.57931034 

48275994 

-0.04827586 

2068965225 

-0.53103448 

27586202 

PBING 
360 0.781 0.104 0.11 

-19.206.896. 

551.724.000 

0.55172413 

79310339 

0.868965517 

2413796 

PBSI 
240 0.808 0.097 0.095 

0.77931034 

48275995 

-0.14827586 

206896531 

-0.63103448 

27586203 

 

The table summarises the agreement at the subgroup level between the XAI-based 

step-scoring system and expert consensus scores. For each subgroup, n_langkah indicates 

the number of scored steps contributed by that subgroup. Accuracy is the proportion of 

steps on which XAI and expert scores match exactly. Up denotes the proportion of 

disagreements in which the XAI score is higher than the expert score (potential over-

scoring), whereas down denotes the proportion of disagreements in which the XAI score 

is lower than the expert score (potential under-scoring). The columns d_acc_pp, d_up_pp, 

and d_down_pp represent deviations (in percentage points) of each subgroup’s accuracy, 

up-rate, and down-rate from the overall sample averages. Values close to zero in these 

deviation columns indicate that a subgroup’s performance is similar to the overall pattern. 

Taken together, the results suggest broadly comparable XAI–expert agreement across 

gender (male vs female) and study programmes (PMAT, PBING, PBSI), with no 

consistent evidence of systematic advantage or disadvantage for particular subgroups in 

this dataset. 

 

Results of Learning of XAI-based step feedback (RQ3) 

For RQ3, we investigated whether XAI-based step feedback improved learning 

compared to traditional rubric-based feedback. Performance on transformational 

geometry was broadly comparable between the XAI and control groups on the pre-test, 

indicating no significant baseline imbalance. This is reflected in the descriptive statistics 

and group comparison reported in Table 1, as well as in the overlapping pre-test score 

distributions in Figure 5.  

Box-and-jitter plots display the distribution of total transformation-geometry test 

scores for the XAI and control groups at pre-test and post-test. For each group and time 

point, the box represents the interquartile range (IQR) with the horizontal line indicating 

the median; whiskers extend to 1.5 × IQR, and points show individual students. The figure 

illustrates comparable baseline performance across groups and a shift toward higher post-

test scores, with no evident floor or ceiling effects. 

Post-intervention, ANCOVA with post-test score, feedback condition as a fixed 

factor, and pre-test score as a covariate suggested that the XAI group prevailed. The effect  
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Figure 5. Distribution of pretest and posttest scores per group 

 

size was in the moderate range (Hedges’ g ≈ 0.4), consistent with recent interpretations 

concerning “medium” effect sizes regarding educational interventions that are part of 

regular classroom practice. The detailed ANCOVA results are summarised in Table 5. 

The corresponding overall effect size and its confidence interval are shown in Figure 6. 

 

Table 5. ANCOVA model coefficients 

Term Coefficient (β) SE t p 
95% CI 

(Lower) 

95% CI 

(Upper) 

(Intercept) 28.40 6.50 4.37 0.000 15.70 41.10 

pre-test 

score 

0.63 0.09 7.00 0.000 0.45 0.81 

groupXAI 2.85 1.17 2.44 0.018 0.56 5.14 

 

 
Figure 6. Forest plot of Hedges’ g (with CI), Y-axis is overall 

 

The ANCOVA indicated a moderate advantage for the XAI group (Hedge g ≈ 0.40; 

Table 5), which is meaningful given that the intervention covered only one four-week 

module in a regular semester. In a large Transformational Geometry class where lecturers 

already face heavy marking loads, an effect of this size, combined with a 99% reduction 

in scoring time, represents a practically useful gain rather than a marginal improvement. 

The individual pre–post trajectories depicted in Figure 8 illustrate how many students in 

the XAI group shifted from lower to higher scores over the course of the intervention, 
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compared to the control group. This aligns with findings from learning analytics and XAI-

ED reports, which show that explanations and visual triggers embedded in the task 

structure can help learners diagnose and repair their strategies. Given that in the field of 

transformational geometry, coordinating multiple representations and transformations 

requires extensive cognitive resources, such process-oriented feedback seems particularly 

useful. 

 

 
Figure 7. Dumbbell plot of individual pre-test and post-test scores by condition 

  

Each horizontal line connects a student’s pre-test (left marker) and post-test (right 

marker) score. Blue lines correspond to the control class (rubric-based feedback), and 

orange lines correspond to the XAI class (rubric + XAI step feedback). The general 

rightward shift, particularly in the XAI group, illustrates that most students improved over 

time, with larger gains visible in the XAI condition. 

At this time, however, our findings indicate that not all elements of transformational 

reasoning had the same opportunities for enhancement. In the process-level analyses, the 

greatest improvements in the XAI group were observed for indicators addressing 

parameter specification and transformation composition (GT2 and GT5). In contrast, 

gains in the domain of conceptual justification and verification (GT7–GT8) were 

moderate and comparable across groups. This asymmetry echoes systematic reviews 

showing that digital feedback is most effective at procedural or step-level aspects of 

performance, with deeper conceptual change most typically delivered through teacher-

led explanation and discussion. From a practical standpoint, the fact that moderate 

learning gains and significant time savings appear to go hand in hand suggests that step-

feedback systems with XAI offer a good trade-off between efficiency and effectiveness 
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in a human-in-the-loop approach, where AI makes routine assessments. At the same time, 

lecturers focus on the conceptual and motivational aspects of the student. 

The XAI system generated precise, accurate, reliable, and specific feedback at the 

step level, with only a moderate impact on learning. This aligns with more recent 

feedback models, which highlight the importance of feedback context rather than its 

informational value alone, as it also determines how students interpret and respond to 

feedback and changes. The results of integrative reviews suggest that motivation, prior 

knowledge, and self-regulated learning skills moderate the extent to which feedback can 

be translated into a change in strategy. Therefore, even if feedback is rich on paper, it can 

lead to only small gains in practice if learners lack the metacognitive resources or do not 

have time to benefit from it. In our study, the intervention was relatively brief (three 

practice sessions); the control group received rubric-type feedback from the lecturer, and 

the tasks were within a single topic of a broader course. In this context, it is reasonable to 

expect that the incremental benefit of XAI-assisted feedback is moderate rather than large. 

At the same time, students reported that the system made it easier for them to find and 

correct problematic steps in their solutions, which matches the observed error reductions 

on GT2 and GT5. 

Compared with typical effects reported in feedback and technology-enhanced 

mathematics interventions, our results fall in the usual small-to-moderate range. They are 

realistic for a short intervention embedded in regular instruction. A recent meta-analysis 

of feedback in educational settings reveals an average effect size of d = 0.48. This highly 

variable effect depends on how feedback is designed and implemented. Meta-analyses of 

formative assessment and technology-enhanced mathematics instruction also often find 

small-to-medium effects on achievement, particularly when interventions are integrated 

into regular instruction rather than implemented as extensive add-on programs. 

According to benchmarks suggested by Kraft (2020), our Hedges’ g ≈ of 0.4 can therefore 

be categorized as “typical” or, to some extent, “substantively important” for field 

interventions in education that need to be scalable and low-cost. From this perspective, 

the XAI-driven feedback seems to be on par with, but not inferior to, similar feedback-

based interventions in mathematics; however, it is significantly more efficient, as 

illustrated by the contrast in scoring time between experts and the XAI system in Table 4 

and Figure 5. 

 

Process-Level Results: Error Patterns Across GT Indicators 

To better understand how XAI-based feedback influenced students’ solution 

strategies, we examined error patterns across the GT1–GT8 indicators at pre-test and post-

test. For each group and time point, we computed the proportion of steps scored 0 

(incorrect or missing). At pre-test, both groups showed the highest error rates on GT2 

(parameter specification), GT5 (composition of transformations), and GT7–GT8 

(conceptual justification and verification), reflecting well-documented difficulties that 

pre-service teachers encounter when working with transformations: misidentifying 

centres and axes, misordering transformations, and struggling to explain why a sequence 

of transformations preserves or changes geometric properties (N. P. Mbusi & Luneta, 

2021). These pre-test patterns are summarised numerically in Table 6 and are clearly 

visible in the heatmap representation in Figure 9 and in the bar plot in Figure 10.  
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Table 6. Summary of assessment data (GT & steps) 
Component Value 

Number of scripts (6 items × 58 participants) 348 

Total annotated steps (≈4 steps/script) 1392 

Average steps per script 4 

Overall data loss 1.1 

Key data loss (pre-process/post-process) 1.7% of 116 entries 

Loss of expert assessment time (rows) 14 (~1.0% of 1392) 

— — 

GT category distribution (counts; % of total steps)  

  GT1 — Identification 206 (14.8%) 

  GT2 — Parameters 180 (12.9%) 

  GT3 — Representation 167 (12.0%) 

  GT4 — Composition 221 (15.9%) 

  GT5 — Application 189 (13.6%) 

  GT6 — Invariance 155 (11.1%) 

  GT7 — Justification 146 (10.5%) 

  GT8 — Cross-check 128 (9.2%) 

 

After the intervention, both groups showed reductions in error rates, but the pattern 

differed across conditions and indicators. In the XAI group, the largest error reductions 

occurred in GT2 (parameter specification) and GT5 (composition), where pre-test error 

rates were highest (Table 6, Figures 9–10). By contrast, improvements in GT7 

(conceptual justification) and GT8 (verification) were more modest and similar across 

groups. The control group also showed some gains, but reductions in GT2 and GT5 errors 

were smaller. This aligns with classroom observations that many UNISMA students 

initially struggle to specify centres of rotation and lines of reflection correctly and to keep 

track of the order of transformations in multi-step tasks. 

 

 
Figure 8. Heat map of pre- and post-test error rates for each GT indicator 

 

Figure 8 visualises the proportion of steps scored 0 (errors) for each GT indicator 

across conditions and time points, transforming the step-level data into a process-oriented 
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picture of where students struggled most. At pre-test, both classes showed their highest 

error rates on GT2 (parameter specification) and GT5 (composition of transformations), 

followed by GT7–GT8 (conceptual justification and verification), indicating that students 

commonly encountered difficulties when specifying transformation parameters, 

combining multiple transformations, and articulating or checking their reasoning.  

 

 
Figure 9. Barplot Pre- and post-test error rate per GT indicator 

 

Figure 9 complements this by displaying pre- and post-test error rates in a grouped 

bar plot. While both classes reduced their error rates over time, the XAI group shows 

markedly larger reductions on GT2 and GT5 than the control group, whereas decreases 

on GT7 and GT8 are more modest and similar across groups. This pattern suggests that 

step-level XAI feedback was particularly effective in helping students identify and 

address procedural weaknesses in parameter specification and composition, whereas 

deeper aspects of conceptual justification and verification still required substantial 

support from lecturer-led explanation and discussion. 

These findings are consistent with prior research showing that transformation 

geometry is a demanding domain in which students and prospective teachers often display 

persistent misconceptions about parameters, invariants, and composition, even after 

traditional instruction (Ada & Kurtulus, 2010; N. P. Mbusi & Luneta, 2021). They also 

resonate with studies that use error analysis as a pedagogical strategy, where making error 

patterns explicit can support productive struggle and deeper reflection on mathematical 

structure (Barana, Marchisio, & Sacchet, 2021; N. P. Mbusi & Luneta, 2021). 

In our case, the XAI system effectively automated fine-grained error analysis by 

flagging specific steps and indicators as problematic, allowing students to focus on the 

parts of their solutions that most needed revision (Koedinger et al., 2010). However, 

because the explanations were primarily local and step-focused, they supported the 

“what” and “where” of correction more strongly than the “why” of underlying concepts, 

which likely explains the smaller differential gains on GT7–GT8. 

From an instructional perspective, these process-level results suggest a division of 

labour between XAI and human feedback. XAI-based step feedback appears particularly 

well-suited to supporting the procedural and representational aspects of transformational 

reasoning (e.g., GT2, GT4, GT5). At the same time, lecturers remain crucial for 

orchestrating discussions, proofs, and tasks that foster conceptual justification and 
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verification (GT7–GT8), as highlighted in recent work on teaching geometric 

transformations from a transformation-based proof perspective (St. Goar & Lai, 2022). 

To more directly connect the validity and fidelity results with the observed 

pedagogical impact, we examined changes in the quality of students’ solution steps across 

the GT indicators. Overall, the XAI group showed larger reductions in the proportion of 

partially or incorrectly scored steps than the control group, particularly for GT1 

Identification, GT4 Composition, and GT5 Application, where XAI–expert agreement 

and explanation fidelity were highest. In contrast, gains on GT7 Justification and GT8 

Cross-checking were smaller and more variable in both groups, mirroring the slightly 

lower accuracy and fidelity of the model on these higher-order indicators. This pattern 

suggests that when the system provides precise, high-fidelity explanations aligned with 

the rubric, students are more likely to improve the corresponding steps in their solutions. 

In contrast, justification and cross-checking remain comparatively difficult for both 

students and the XAI system.  

We also conducted an exploratory mediation analysis to test whether improvements 

in step quality mediate the relationship between XAI feedback and post-test performance. 

We constructed a composite index of step-quality improvement by averaging the change 

in the proportion of entirely correct steps across GT1–GT8 during practice, and specified 

a simple mediation model with treatment group (XAI vs. control) as the independent 

variable, step-quality improvement as the mediator, and post-test score as the dependent 

variable. The pattern of coefficients was consistent with partial mediation: membership 

in the XAI group predicted larger gains in step quality, which in turn were positively 

associated with higher post-test scores, and the direct effect of group on post-test 

achievement decreased when the mediator was included. Given the modest sample size, 

these findings should be interpreted cautiously. However, they support the interpretation 

that XAI explanations primarily enhance learning by improving the quality of 

intermediate solution steps rather than only the final answers. 

From a modelling perspective, GT7 and GT8 also posed a qualitatively different 

challenge than GT2 and GT5: students’ justifications and cross-checks were expressed in 

highly varied natural-language and diagrammatic forms, so that many valid arguments 

did not match the relatively limited patterns in the training data. As a result, the language 

model found it more difficult to map this heterogeneous space of high-level reasoning 

onto the course 0–2 rubric categories, even though it could reliably recognise more 

formulaic parameter and composition errors. 

 

Students’ Perceptions of XAI Feedback (Qualitative Findings) 

The interview data from six students in the XAI group provide additional insight 

into how learners interpreted and used the XAI-based step feedback. Three main themes 

emerged from the thematic analysis. These themes, together with illustrative quotations 

from participants XA1–XA6, are summarised in Table 7. 

 

Table 7. Summary of themes from student interviews in the XAI group 

Theme Description 
Example quotation 

(pseudonym) 

1. Locating the 

wrong step 

Students perceived XAI primarily as a 

tool to quickly locate which step in their 

“With the colours and GT 

labels, I can see directly 
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multi-step solution was problematic. 

Colour-coded scores and GT indicators 

helped them see where they needed to 

focus, rather than guessing based on a low 

overall score. 

which step is wrong, not just 

that my answer is wrong.” 

(XA1) 

  
“When GT2 or GT5 turns 

red, I know immediately 

which part of my solution I 

should check again.” (XA3) 

2. Explanations 

as guides for 

revision 

Students used the short textual 

explanations mainly as practical guidance 

for revising procedural aspects of their 

work (e.g., missing reference points, 

incorrect transformation order). They felt 

the explanations were sufficient to correct 

many steps on their own, but sometimes 

still lacked deeper conceptual 

clarification. 

“The short message like 

‘centre of rotation is 

missing’ is enough for me to 

fix the step by myself.” 

(XA2) 

  
“The feedback tells me what 

is incomplete or in the wrong 

order so that I can repair the 

procedure, but not always 

understand the concept 

behind it.” (XA4) 

3. XAI feedback 

as a complement 

to lecturer 

feedback 

Students framed XAI as complementing, 

rather than replacing, the lecturer. They 

appreciated the immediacy and 

consistency of XAI feedback, but still 

relied on the lecturer for deeper 

conceptual explanations, connections 

across topics, and motivational support 

when they felt confused or discouraged. 

“The XAI feedback is fast 

and clear, but when I still do 

not understand why, I ask the 

lecturer to explain it in 

another way.” (XA5) 

  
“I trust the XAI scores when 

they match what I expect, but 

I still need my lecturer to 

discuss tricky concepts and 

check if my thinking really 

makes sense.” (XA6) 

 

The table summarises three recurrent themes identified through thematic analysis 

of semi-structured interviews with six students in the XAI group (coded XA1–XA6). For 

each theme, a short description and one or two illustrative quotations are provided. 

Quotations have been lightly edited for clarity while preserving the original meaning. 

Pseudonyms are used to protect participants’ identities. 

First, students described the feedback as a tool for “locating the wrong step”. They 

reported that the colour-coded scores and GT indicators helped them quickly identify 

which part of a multi-step solution was problematic, rather than having to infer errors 

solely from a low overall score. This aligns with findings from research on learning 

analytics dashboards, which show that visual cues tied to specific tasks can help students 
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identify where they are struggling and prompt targeted revision (Banihashem, Mahroeian, 

Khosravi, Sadiq, & Gasevic, 2022; Schwendimann et al., 2017). In our context, students 

emphasised that seeing an indicator such as GT2 or GT5 marked in red prompted them to 

re-check the relevant parameter or composition step rather than merely redoing the entire 

solution, as reflected in Theme 1 in Table 7. 

Second, students viewed the explanations as “guides for revision”, especially for 

procedural aspects. Several interviewees explained that the short textual explanations 

(e.g., pointing out a missing reference point or incorrect order) were sufficient for them 

to correct the step on their own. This perceived usefulness is consistent with broader 

evidence that actionable, step-specific feedback can enhance students’ ability to adjust 

their strategies in technology-enhanced environments (Barana et al., 2021; Koedinger et 

al., 2010). At the same time, students noted that the explanations did not always fully 

clarify deeper conceptual issues; when they were confused about why a particular 

transformation was appropriate or why an invariant should hold, they still turned to the 

lecturer for more detailed discussion. This balance between using XAI for procedural 

repair and relying on the lecturer for conceptual clarification is captured in the quotations 

under Theme 2 in Table 7. 

Third, students framed XAI feedback as complementing, rather than replacing, 

lecturer feedback. Interviewees appreciated the immediacy and consistency of the XAI 

feedback. However, they emphasized that they still valued the lecturer’s ability to explain 

concepts in multiple ways, connect tasks across the course, and provide motivational 

support. This echoes emerging evidence that explanations offered by automated scoring 

and analytics systems do not automatically increase student trust or motivation unless 

they are integrated into a broader instructional context (Banihashem et al., 2022). In our 

setting, students tended to trust the XAI scores when they aligned with their expectations. 

However, they relied on the lecturer to resolve discrepancies or elaborate on the 

conceptual meaning of the rubric indicators. 

Overall, the qualitative findings align with XAI-ED frameworks that advocate 

human-centred design by tailoring explanations to stakeholder needs and embedding 

them into existing feedback practices (Khosravi et al., 2022). Students used XAI primarily 

as a fast, targeted diagnostic tool for their solutions. At the same time, lectures and in-

class discussions remained the main arena for making sense of transformational geometry 

at a deeper level. Taken together, the three themes in Table 7 thus portray XAI feedback 

as a process-level support for locating and revising errors, embedded within a broader 

ecosystem of human-led conceptual explanation and motivational guidance. 

 

Theoretical Implications: XAI Feedback As Process-Level Formative Feedback 

Our quantitative and qualitative findings also have implications for how XAI-based 

step feedback can be interpreted within formative feedback theory. Hattie and 

Timperley’s (2007) Model distinguishes four levels of feedback (task, process, self-

regulation, and self) and highlights that feedback aimed at processes and self-regulation 

is often more powerful than feedback focused solely on task correctness. Our results 

suggest that, in this study, XAI-based step feedback operated primarily at the task and 

process levels: it pointed out whether specific steps were correct or incomplete (task), and 

in many cases indicated what needed to be changed in the procedure to align with rubric 

expectations (process), as reflected in overall learning gains in Table 5, Figures 2 and 7. 
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The process-level effects are most visible in the reductions in GT2 and GT5 error 

rates (Table 6, Figures 9–10) and in students’ interview accounts of using GT indicators 

to locate problematic steps (Table 7). Several students explicitly mentioned GT2 and GT5 

when describing how they rechecked the centre, line, or order of transformations in the 

XAI interface, mirroring the quantitative pattern of improvement on these indicators. This 

pattern resonates with recent meta-analytic work showing that feedback targeting 

processes and strategies tends to yield larger learning gains than purely outcome-focused 

information, especially in complex domains like mathematics (Wisniewski et al., 2020). 

At the same time, the relatively modest, non-differential improvements in 

conceptual justification and verification (GT7–GT8) underscore the limits of the current 

XAI design for supporting self-regulation or higher-level conceptual change. This pattern 

is consistent with broader observations that current transformer-based language models 

remain relatively unrobust in evaluating rich, context-dependent mathematical 

arguments, especially when training data for such high-level reasoning steps are relatively 

sparse. The system signalled where problems occurred but did not provide the kind of 

explanation or prompting that would help students plan, monitor, and evaluate their own 

problem-solving at a metacognitive level. From an XAI-ED perspective, the study 

illustrates the benefits and trade-offs of aligning explanations with domain-specific 

rubrics. Khosravi et al.’s XAI-ED framework emphasises that explanations should be 

understandable for stakeholders, grounded in pedagogically meaningful constructs, and 

evaluated alongside learning outcomes and fairness (Khosravi et al., 2022). In our design, 

mapping explanations to GT1–GT8 indicators appears to have made model outputs more 

interpretable for both students and instructors and to have supported targeted process-

level revisions, as evidenced by the fidelity metrics in Table 3. 

However, as highlighted in recent XAI-in-education reviews, transparency at the 

task or feature level does not automatically translate into deeper understanding or trust; 

these outcomes depend on how explanations are orchestrated within teaching practices 

and how they interact with learners’ prior knowledge (Liu, Pinto, & Paquette, 2024). 

Theoretically, our findings support a view of XAI-based assessment as a complementary 

actor in a human–AI feedback system rather than as a standalone feedback provider. 

Learning analytics research has shown that when teachers have access to fine-grained 

process data, they can better target instructional time to the concepts and tasks that most 

challenge students (Banihashem et al., 2022; Schwendimann et al., 2017). Similarly, 

XAI-based step scoring and explanations can take over the routine identification and 

signalling of procedural issues, freeing instructors to concentrate on designing activities 

and discussions that foster conceptual justification, proof, and self-regulation in 

transformational geometry. Rather than “bridging” cognitive constructs in a strong sense, 

our results indicate that XAI-based explanations, when aligned with a rubric like GT1–

GT8, can help connect model decisions to observable aspects of students’ solution 

processes in pedagogically actionable ways, but still require teacher mediation to achieve 

deeper conceptual and metacognitive goals. 

 

Limitations and Future Work  

Although the results are promising for the Transformational Geometry course 

studied here, several limitations should be noted. Firstly, the pedagogical phase involved 

only two intact classes in a single Mathematics Education programme at Universitas 
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Islam Malang. Although baseline checks and ANCOVA adjustment indicated broadly 

similar pre-test performance, residual class differences (e.g., preparation or classroom 

dynamics) cannot be ruled out. Future studies should replicate the design across more 

classes and sites to enable multilevel models and more robust subgroup analyses.  

Secondly, the intervention was limited to one mathematical topic—

transformational geometry in one curriculum. The course was delivered in an Islamic 

private university in East Java with a strong emphasis on teaching practice, so the findings 

may not fully transfer to institutions with different student populations, technological 

infrastructures, or assessment cultures. The XAI model was trained on step traces from 

this field and fitted to a GT1–GT8 aligned rubric. There is therefore little evidence as to 

whether the findings are generalisable to other areas of mathematics (e.g., algebra, 

calculus, statistics), to other levels of academic learning, or to institutions with varying 

cultural, technological, and assessment infrastructures. It may be significant to extend the 

method to other topics or contexts and to investigate further whether the same pattern of 

system-wide process-level improvement or learning gains occurs, and to what extent 

similar patterns of process-level improvement and learning gains emerge.  

Thirdly, the current implementation of the XAI system operates entirely on textual 

and symbolic step traces and does not evaluate hand-drawn diagrams or dynamic 

constructions. This design choice was partly driven by the constraints of the LMS, where 

students entered their solutions in text boxes, and any sketches were produced on paper 

outside the system. As a result, when discrepancies arise between a student’s written steps 

and their informal diagrams, only the written reasoning is reflected in the automated 

scores. In the present course, the lecturer could still inspect students’ diagrams during 

class discussions, but from a measurement perspective, it remains an important limitation. 

Extending the approach to multimodal input for example, by combining step-level text 

models with recent vision–language architectures for handwritten mathematics—

represents a promising direction for future work. Finally, the current generation of XAI 

feedback primarily focuses on providing task- and process-level information about 

students' solution steps. Even though this fits comfortably within the theoretical narrative 

that espouses the efficacy of process-level feedback, the interviews and rubric results 

indicate that higher-order conceptual justification and metacognitive regulation are, to a 

large extent, still human. Future work might investigate hybrid designs in which XAI-

based step feedback is purposefully designed to integrate teacher-led discussion, peer-

based collaboration, and guided prompts that address self-regulation and explore potential 

alternative explanations, thereby more effectively scaffolding conceptual thinking rather 

than merely signalling what to address. 

 

▪ CONCLUSION 

This study examined whether an explainable AI (XAI)–based system can validly 

and reliably score students’ solution steps in transformational geometry, how faithful and 

fair its explanations are, and whether step-level XAI feedback can improve learning in an 

authentic university course. Across the validation analyses, the system approximated 

expert step scoring with agreement levels typically considered acceptable for educational 

assessment, while local explanation checks indicated that the highlighted features were 

meaningfully related to model predictions and showed no large performance disparities 

across gender or study programme. In the classroom quasi-experiment, students who 
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received XAI-based feedback achieved higher adjusted post-test scores than those who 

received conventional rubric-based feedback, with moderate learning gains over a short 

intervention. Process-level analyses indicated that these gains were concentrated on 

indicators related to parameter specification and composition of transformations, and 

interview data showed that students used the XAI interface to locate and correct specific 

steps rather than merely checking final answers. In our Transformational Geometry 

classes at Universitas Islam Malang, the combination of psychometric results, time-

efficiency data, and classroom outcomes indicates that rubric-aligned XAI step 

assessment can provide scalable task- and process-level feedback without replacing the 

lecturer’s role. These conclusions should be interpreted in light of the current XAI system, 

which evaluates only textual and symbolic steps, while the lecturer remains responsible 

for monitoring students’ use of diagrams and for orchestrating discussions that address 

deeper conceptual understanding in transformational geometry. 

At the same time, the work has important implications, limitations, and avenues for 

future research. In practice, the results point towards a human-in-the-loop configuration 

in which XAI handles routine, high-volume step scoring and provides immediate, rubric-

aligned feedback on the technical aspects of students’ solutions. At the same time, 

lecturers focus on facilitating conceptual discussion, addressing justification and 

verification indicators, and supporting students’ motivation and self-regulation. The study 

is constrained by its small sample, two intact classes from a single institution, and focus 

on a single topic and short-term outcomes; as discussed in the Limitations and future work 

section, these factors call for cautious generalisation and motivate replication across 

additional cohorts, institutions, and mathematical domains. Future research should also 

explore how XAI explanations can be redesigned to better support conceptual 

justification and self-regulation, how teacher and peer perspectives can inform the 

orchestration of XAI feedback in classroom practice, and how more advanced 

psychometric and multilevel methods can be used to evaluate XAI-based assessment at 

scale. Within these boundaries, the present study contributes an integrated evaluation of 

XAI-based step assessment in mathematics. It illustrates how such systems can be 

embedded in formative assessment practices in ways that complement rather than replace 

human expertise. 
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