Profile of the Concept Understanding of Two-Dimensional Figure Based on Pirie Kieren's Theory Reviewed from Learning Motivation in Elementary School


(1) Universitas Madura, Indonesia
(2) Universitas Madura, Indonesia
(3) Universitas Madura, Indonesia


Metrics→ |
Indexing Site→ | ![]() |
![]() |
![]() |
![]() |
Copyright (c) 2025 Ukhti Raudhatul Jannah, Mohammad Amiruddin, Septia Nurhidayati
This study aims describe understanding concept of two-dimensional figure based on Pirie Kieren’s theory in terms of learning motivation. This study uses a qualitative approach with a case study type of research. The results found that there were differences in the flow of students' understanding of high, medium, and low learning motivation in solving questions. When solving square questions, students with high learning motivation do effective folding back and arrive at inventing, students with motivation are doing infective folding back and not inventing, and students with low motivation do not fold back and do not get inventing. When solving rectangular problems, high-motivated students did ineffective folding back and did not arrive at inventing, moderately motivated students did not fold back and arrived at inventing, and low-motivated students did effective folding back and arrived at inventing. The similarity is that they both start from primitive knowledge.
Keywords: concept understanding, Pirie Kieren Theory, two-dimensional figure.
Asih, Rohman, N., & Utami, A. D. (2020). Profil Lapisan Pemahaman Konsep Barisan dan Deret Berdasarkan Teori Pirie Kieren. Jurnal Pendidikan Edutama, 4(1), 83–97.
Davis, R. B. (1984). Learning mathematics: The cognitive science approach to mathematics education. New Jersey, NJ: Greenwood Publishing Group.
Djumali, Sundari, Ali, S. T., Santoso, J., Subadi, T., Chorli, A., & Wardhani, J. D. (2014). Landasan Pendidikan. Yogyakarta: Gava Media.
Grinevitch, O. A. (2004). Student understanding of abstract algebra: a theoretical examination. Unpublished PhD Thesis, Bowling Green State University.
Gulkilik, H., Yuruk, N., & Ugurlu, H. H. (2015). Examining Students’ Mathematical Understanding of Geometric Transformations Using the Pirie-Kieren Model. Educational Sciences: Theory and Practice, 15(6), 1531–1548.
Hasanah, I. N. (2019). Profil Pemahaman Konsep Teori Pirie dan Kieren pada Penyelesaian Masalah Ditinjau dari Pemahaman Konsep Geometri di SMP Berbasis Boarding School (Skripsi, Universitas Islam Negeri Surabaya, Indonesia). Diperoleh dari http://digilib.uinsby.ac.id/38582/2/Iva%20Nur%20Hasanah_D04213015.pdf
Hollebrands, K. F. (2003). High School Students’ Understandings of Geometric Transformations in the Context of a Technological Environment. The Journal of Mathematical Behavior, 22(1), 55–72.
Keene, K. A., Glass, M., & Kim, J. H. (2011). Identifying and Assessing Relational Understanding in Ordinary Differential Equations. Proceedings of the Frontiers in Education Conference (FIE), 12–15.
Kemendikbud. (2003). Undang-Undang Sistem Pendidikan Nasional Tahun 2003 (UU RI Nomor 20 Tahun 2003). Jakarta: Sinar Grafika.
Kemendikbud. (2016). Permendikbud Nomor 22 Tahun 2016 Tentang Standar Proses Pendidikan dan Menengah. Jakarta: Kemendikbud.
Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding It Up: Helping Children Learn Mathematics. Washington, DC: National Academy Press.
Lawan, A. (2011). Growth of Students’ Understanding of Part-Whole Sub-Construct of Rational Number on the Layers of Pirie-Kieren Theory. The Association for Mathematics Education of South Africa, 69.
Lester, F. K. (2005). On the Theoretical, Conceptual and Philosophical Foundations for Research in Mathematics Education. ZDM, 37(6), 457–467.
Martin, L. C. (2008). Folding Back and the Dynamical Growth of Mathematical Understanding: Elaborating the Pirie-Kieren Theory. Journal of Mathematical Behavior, 27(1), 64–85.
Martin, L., & Towers, J. (2016). Folding Back and Growing Mathematical Understanding: A Longitudinal Study of Learning. International Journal for Lesson and Learning Studies, 5(4), 281–294.
Miles, M. B., & Huberman, A. M. (1994). An Expanded Sourcebook: Qualitative Data Analysis. United States of America: Sage Publications.
National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM.
Nillas, L. A. (2010). Characterizing Preservice Teachers’ Mathematical Understanding of Algebraic Relationships. International Journal for Mathematics Teaching and Learning, 1–24.
Oscakir, B., Konca, A. S., & Arikan, N. (2019). Children’s Geometric Understanding through Digital Activities: The Case of Basic Geometric Shapes. International Journal of Progressive Education, 15(3), 108–122.
Pirie, S., & Kieren, T. (1988). Understanding: Instrumental, Relational, Intuitive, Constructed, Formalized? How Can We Know? Educational Studies in Mathematics, 3(2), 2–6.
Pirie, S., & Kieren, T. (1989). A Recursive Theory of Mathematical Understanding. Educational Studies in Mathematics, 9(1), 7–11.
Pirie, S., & Kieren, T. (1992). Creating Constructivist Environments and Constructing Creative Mathematics. Educational Studies in Mathematics, 23, 505–528.
Pirie, S., & Kieren, T. (1994). Growth in Mathematical Understanding: How Can We Characterize It and How Can We Represent It? Educational Studies in Mathematics, 26(2), 165–190.
Purnawanti, Y., Gembos, S., & Ervina, M. S. (2013). Profil Pemahaman Konsep Segitiga pada Siswa Sekolah Dasar (SD) Berdasarkan pada Teori van Hiele. Jurnal Ilmiah Pendidikan Matematika, 1(2), 9–18.
Rinaldi, E. N., Supratman, & Hermanto, R. (2019). Proses Berpikir Peserta Didik Ditinjau dari Kemampuan Spasial Berdasarkan Level Berpikir van Hiele. Journal of Authentic Research on Mathematics Education (JARME), 1(1), 38–45.
Romansyah, F., & Nurhamdiyah. (2018). Profil Pemahaman Konsep Siswa Sekolah Dasar dalam Menyelesaikan Luas dan Keliling Lingkaran. Jurnal Pendidikan Tambusai, 2(6), 17–27.
Sfard, A. (1991). On the Dual Nature of Mathematical Conceptions: Reflections on Processes and Objects as Different Sides of the Same Coin. Educational Studies in Mathematics, 22(1), 1–36.
Sierpinska, A. (1994). Understanding in Mathematics. London, UK: The Falmer Press.
Skemp, R. R. (1978). Relational Understanding and Instrumental Understanding. Arithmetic Teacher, 26(3), 9–15.
Slaten, K. (2010). Effective Folding Back via Student Research of the History of Mathematics. Proceedings of the 13th Annual Conference on Research in Undergraduate Mathematics Education, 1(10).
Sugiyono. (2015). Metode Penelitian Kuantitatif Kualitatif dan R&D. Bandung: Alfabeta.
Suindayanti, Afifah, D. S., & Suja’i, I. S. (2019). Teori Pirie Kieren: Lapisan Pemahaman Siswa SMP Berkemampuan Matematika Tinggi dalam Menyelesaikan Soal Bangun Ruang. MaPan: Jurnal Matematika dan Pembelajaran, 7(2), 21–28.
Syamsuddin, A. (2019). Investigating Student’s Geometric Thinking in Looking for the Linkages of Quadrilaterals (A Case Study on Students in the Formal Operation Stage). International Journal of Environmental & Science Education, 14(7), 435–444.
Uno, H. B. (2017). Teori Motivasi dan Pengukurannya (Analisis di Bidang Pendidikan). Jakarta: Bumi Aksara.
Wahyu, K., Amin, S. M., & Lukito, A. (2017). Motivation Cards to Support Students’ Understanding on Fraction Division. International Journal on Emerging Mathematics Education, 1(9), 89–99.
Warner, L., & Schorr, R. Y. (2004). From Primitive Knowing to Formalizing: The Role of Student-to-Student Questioning in the Development of Mathematical Understanding. Proceedings of the Twenty Sixth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, 2, 429–437.
Yin, R. K. (2003). Case Study Research: Design and Methods (3rd ed.). Thousand Oaks, CA: Sage.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.